The following information is supplied as an aid to memory

Speed of light, $c = 3.00 \times 10^8 \text{ m/s}$

Electron mass, $m_e = 9.11 \times 10^{-31} \text{ kg}$

Planck's constant, $h = 6.63 \times 10^{-34} \text{ J.s}$

Elementary charge, $e = 1.60 \times 10^{-19} \text{ C}$

Permittivity of free space, $\varepsilon_0 = 8.85 \text{ x } 10^{-12} \text{ C}^2/\text{N.m}^2$

Rydberg constant, $R_H = 1.10 \times 10^7 \text{ m}^{-1}$

Avogadro's constant, $N_A = 6.02 \times 10^{23} \text{mol}^{-1}$

Stefan-Boltzmann constant, $\sigma = 5.671 \times 10^{-8} \text{ Wm}^{-2} \text{K}^{-4}$

Bohr Magneton $\mu_B = 9.27 \times 10^{-24} \, \text{JT}^{-1}$

SECTION A: Answer ALL Questions from this section

Question 1(Compulsory)

(a) Define the following terms

(i) Photoelectric effect [1 marks]

(ii) Compton effect [1 marks]

(iii)Auger effect [1 marks]

- (b) Given that each square centimeter of the earth's surface radiates energy at the rate of 6.3×10^3 Js⁻¹, calculate the temperature of the sun's surface in °C. Assume that Stefan's law applies and that the sun is a blackbody. [3 marks]
- (c) If the mass of proton is 1860 times that of electron, compute the de Broglie's wavelength in Å of a photon whose kinetic energy is equal to the rest mass energy of an electron. [3 marks]
- (d) Briefly explain how Einstein postulates in the theory of relativity accounts for the 'null' result of the Michelson-Morley experiment? [3 marks]
- (e) What is the activity of one gram of $_{85}Ra^{226}$ whose half-life is 1860 years? [3 marks]
- (f) Estimate the atomic number Z of atoms for which the lowest frequency X-ray emitted has wavelength $\lambda \sim 0.4~\text{Å}$ [3 marks]

- (g) The existence of photoelectric work function is not contrary to classical physics. Since the work function is equal to $h\nu_0$, why isn't the existence of a cut-off frequency also acceptable classically?
- (h) Distinguish between Bohr's correspondence and Bohr's complementary principle [3 marks]
- (i) Enumerate any three (3) basic experimental results obtained about photoelectric effect

[3 marks]

(j) Calculate the fractional change in the wavelength of an X-ray of wavelength 0.400Å that undergoes 90° Compton scattering from an electron. [3 marks]

SECTION B: Answer ONLY TWO Questions from this section

Question 2

In a Compton scattering experiment, the scattered photon has energy of 140 keV and the scattered electrons kinetic energy is 40 keV. Find

(i) the wavelength of the incident photons,

[4 marks]

(ii) the angle, θ , through which the photon is scattered, and

[6 marks]

(iii)the angle at which the electrons move off

[10 marks]

Question 3

(a) Show that the kinetic energy T, for one dimensional motion of a particle of rest mass m_0 and mass m, is given by

$$T = \int_{U=0}^{U} \mathbf{F} \cdot d\mathbf{s} = mc^2 - m_0 c^2$$

where the symbols have their usual meanings hence obtain the equivalence of mass and energy. [12 marks]

- (b) A train moving at 0.6c relative to the ground has a measured length of 320 m in the ground frame. How long does it take to pass a tree as measured
 - (i) in the ground frame, and

[4 marks]

(ii) in the train frame

[4 marks]

Question 4

- (a) Discuss the result of Stern-Gerlach experiment on space quantization. [7 marks]
- (b) In an external magnetic field B=0.5 kT, what is the separation between adjacent energy levels of an atom whose magnetic moment is equal one Bohr magnetron? [5 marks]
- (c) Sodium which has a single electron in the 3s state emits doublet lines at 589.0 nm and 589.6 nm in making transition to the ground state (which consists of a single level). What is the
 - (i) difference in energy between the excited states?

[4 marks]

(ii) effective magnetic field experienced by the electron?

[4 marks]

Question 5

- (a) Describe the Bohr's theory of hydrogen atom and calculate the radius and energy (in eV) of the first orbital in terms of the fundamental constants [13 marks]
- (b) Work function of potassium is 2.25 eV. A beam with a wavelength of 400 nm has an intensity of $10^{-9} Wm^{-2}$. Find the
 - (i) maximum kinetic energy of the photoelectrons and

[2 marks]

(ii) number of electrons emitted per meter squared per second from the surface assuming 3% of incident photons are effective in getting electrons [5 marks]

********************	******
----------------------	--------

MERRY XMAS AND A PROSPEROUS NEW YEAR