

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE & TECHNOLOGY UNIVERSITY EXAMINATIONS 2013 4TH YEAR 1ST SEMESTER EXAMINATION OF BACHELOR OF EDUCATION (SCIENCE) REGULAR

COURSE CODE: SCH 405

COURSE TITLE: SYNTHETIC ORGANIC CHEMISTRY

DATE: 12/8/13 TIME: 9.00 -11.00 AM

DURATION: 2 HOURS

INSTRUCTIONS

- 1. This paper contains five (5) questions.
- 2. Answer question 1 (compulsory) and ANY other TWO questions.
- 3. Write all answer in the booklet provided.

SECTION A: ANSWER ALL QUESTIONS

Question 1

- (a) Define the following terms: (2 marks)
 - (i) Organic synthesis
 - (ii) Retrosynthetic analysis
- (b) What is the significance of "organic synthesis." Discuss any <u>TWO</u> counts. (2 marks)
- (c) Name the four interrelated aspects which need to be considered in planning and designing synthesis. (2 marks)
- (d) Distinguish between the following terms; (4 marks)
 - (i) Convergent and divergnent synthesis
 - (ii) Carbocation and carbene
- (e) What are the limitations of organic synthesis? (4 marks)
- (f) Starting with 1-bromopropane and 1,2-dibromoethane outline the synthesis of 2-pentanone. (6 marks)
- (g) Isopropyl methyl ether [(CH₃OCH(CH₃)₂] may be prepared by any one of the following reactions. Which reaction would give the better yield? Explain your choice.
 - (I) $CH_3ONa + (CH_3)_2CHI$ $CH_3OCH(CH_3)_2$
 - (II) $(CH_3)_2CHONa + CH_3I$ $CH_3OCH(CH_3)_2$ (5 marks)
- (h) Synthesis of symmetrical ethers is achieved by dehydration of primary alcohols. An exception to this restriction is the synthesis of unsymmetrical ether from tert-butyl alcohol with a primary alcohol in sulphuric acid at room temperature. Give a likely mechanism for this reaction and explain why it is successful. (5 marks)

SECTION B (40 MARKS): ANSWER ANY TWO QUESTIONS FROM THIS SECTION EACH QUESTION CARRIES 20 MARKS

Question 2

- (a) Synthesis of n-propylalcohol from n-propylbromide follows SN² mechanism while synthesis of tert-butly alcohol from tert-butyl bromide follows SN¹.
 - (i) Outline $\underline{\mathbf{THREE}}$ differences between SN^1 and SN^2 (3 marks)
 - (ii) Give the mechanisms for the SN^1 hydrolysis with hot silver hydroxide and the SN^2 hydrolysis with hot potassium hydroxide. (7 marks)
- (b) Which of the alkyl halides given below would you expect to react more rapidly by an SN² mechanism.

Explain your answer.

(4 marks)

- (II) $CH_3CH_2CH_2CI$ vs $CH_3CH_2CH_2Br$
- (c) With the aid of energy-reaction path diagrams, explain why the energy profile of SN^2 has only one transition state while SN^1 has two transition states. (6 marks)

Question 3

- (a) Explain each of the following observations:
 - (i) Regiospecificity of hydrogenation of alkenes fails without a peroxide in the reaction matrix. (3 marks)
 - (ii) P-2 catalyst is preferred in place of Nickel metal. (2 marks)
 - (iii) Acetylene is synthesizable from calcium carbonate. (3 marks)
 - (iv) Proton of acetylene is easily replaced by a metal. (2 marks)
- (b) Outline the synthesis of 1-bromobutane from 1.2-dibromoethane and ethylbromide.

 Show all the necessary steps and the reaction mechanisms involved. (10 marks)

Question 4

(a) Outline the multistep synthesis of methylenehydroxycyclopentane from

Methylcyclopentane: (8 marks)

(b) Why is chlorination not a preferred route. (2 marks)

(c) Give the structures and names for compounds **A-E.** (10 marks)

Question 5

a)	Briefly d	iscuss the synthetic pathway of any ONE of the following compounds. (15 marks)
	(i)	Quinines
	(ii)	Nicotine
	(iii)	Chloroquine
	(iv)	Pyrethrins
b)	Discuss how organic chemical reactions can be classified with respect to structural	
	change.	(5 marks)

 \boldsymbol{D}

N

 $\boldsymbol{\mathit{E}}$