UNIVERSITY OF NAIROBI

SCHOOL OF COMPUTING AND INFORMATICS

AUTOMATA THEORY CSC 222 SUBBMITED BY EXAM DAY JUNE, 2017

TIME: I HOUR

TOTAL 50 MARKS ANSWER ALL QUESTIONS

Each question carries equal 5 marks

- 1. Suppose there are 50 marbles of four different colours in a sack, if exactly 8 marbles are red, show that there are at least 14 of the same colour. According to the Pigeon-hole principle
- 2. Using pumping lemma Show that $L = \{a^n : n \text{ is a prime number}\}$ is not regular.
- 3. Using Myhill-Nerode Theorem verify whether $L = \{a \ nbn : n \ge 0\}$ is regular or not
- a) Give examples for Moore and mealy models of finite automata with outputs.b) Differentiate between Chomsky's Normal Form (CNF) and Greibach Normal Form (GNF).
- 5. Prove that the grammar

 $S \rightarrow aB | ab,$ $A \rightarrow aAB | a,$ $B \rightarrow ABb | b$

is ambiguous.

6. Given a CFG as

 $G = (\{S, A, B, C, E\}, \{a, b, c\}, P, S)$

with production P given by

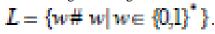
 $S \rightarrow AB$ $A \rightarrow a$ $B \rightarrow b$ $B \rightarrow C$ $E \rightarrow c / \lambda$

Obtain L(G) and obtain an equivalent grammar $L(\hat{G})$ by eliminating useless terminals and productions. 7. Convert the grammar with productions

$$S \rightarrow abAB,$$

 $A \rightarrow bAB | \lambda,$
 $B \rightarrow BAa | A | \lambda$

into Chomsky Normal Form.


8. Consider the set of all strings over $\{a, b\}$ with no more than twice as many *a*'s as *b*'s:

$$\{x \in \{a, b\}^* \mid \# a(x) \le 2\# b(x)\}$$

(i) Give a CFG for this set, and prove that it is correct.(ii) Give a PDA for this set. Show sample runs on the input strings

aabbaa, aaabbb and aaabaa.

9. Design a Turing machine which recognizes the language

10. Design a deterministic Turing machine (DTM) to accept the language

$$L = \{a^{i}b^{i}c^{i} | i \ge 0\}.$$