

UNIVERSITY EXAMINATIONS

2013/2014 ACADEMIC YEAR
FOR THE DEGREE OF BACHELOR OF SCIENCE IN ECON/MATH

MATHS 111: VECTOR GEOMETRY

DAY: TUESDAY

DATE: 12/8/2014
TIME: 9:00AM - 11:00AM
STREAM: Y1S1

Instructions:

Attempt question one and any other two question.

Question 1 (30 marks)

1. (a) Differentiate between a vector and a scalar giving an example of each case
(b). Let $\mathrm{u}=4 \mathrm{i}+5 \mathrm{j}+2 \mathrm{k}$ and $\mathrm{v}=2 \mathrm{i}-\mathrm{j}+3 \mathrm{k}$

Find each of the following
(i) $2 u-v$
(ii) $2|u+v|$
(c). If c is a scalar and v a vector show that for any vectors in $\mathfrak{R}^{3} \& \mathfrak{R}^{2}$ then

$$
\begin{equation*}
\|\mathrm{cv} \mid\|=\|\mathrm{c}\|\|\mathrm{v}\| \tag{4mks}
\end{equation*}
$$

(d). If $v=(2,2,1)$, find the length of v and hence the acute vector in opposite direction of v : (4mks)
(e). Let m be the mid point of a line segment PQ . Let O be a point not on the line PQ. Show that:

$$
\begin{equation*}
\overrightarrow{\mathrm{OM}}=1 / 2 \overrightarrow{\mathrm{OP}}+1 / 2 \mathrm{OQ} \tag{4mks}
\end{equation*}
$$

(f). Let u and v be two vectors $\operatorname{In} \mathfrak{R}^{2} \& \mathfrak{R}^{3}$. Let θ be the angle between u and v then show that: $u \cdot v=||u||| | v| | \cos \theta$ and hence If $u=(3,1,2)$ and $v=(1,4,3)$ find the angle between u \& v :
(g). Find the angle between two planes $x+2 y-z=6$ and $3 x+2 y-z=7$
(h). Find the equation of a plane with normal vector $\mathrm{n}=(1,2,3)$ containing the point

$$
(2,-1,5)
$$

(3mks)

Question 2 (20 marks)

2. (a) Show that for any set of vectors $\mathbf{u} \& \mathbf{v}$ then $\mathbf{u x v}=-\mathbf{v} \mathbf{x}$
(4mks)
(b) Find a vector orthogonal to both $\mathbf{u}=(1,3,2)$ and $\mathbf{v}(4,01)$:
(c) A triangle ABC has vertices on $\mathrm{A}(1,2,2) \mathrm{B}(3,4,5)$ and $\mathrm{C}(5,6,4)$. Find its area.
(5mks)
(d) A parallelopipe has vectors on its edges as following $\mathbf{u}=(2,3,1) \mathbf{v}=(3,4,3)$ and $\mathbf{w}=(4,5,6)$. Find its volume:
(e) For $\mathbf{U}=2 \mathrm{i}+\mathrm{j}-\mathrm{k}, \quad \mathbf{V}=3 \mathrm{i}+2 \mathrm{j}+\mathrm{k}$. Find $\mathbf{U} \mathbf{x} \mathbf{V}$

Question 3 (20 marks)

3. (a). Given two vectors In $\mathfrak{R}^{\mathrm{n}} \mathbf{u}$ and \mathbf{v}. show that

$$
\begin{equation*}
u . v=1 / 4\left(|u+v|^{2}-|u-v|^{2}\right) \tag{4mks}
\end{equation*}
$$

(b) Let $\mathrm{u}=(1,2,-5) \mathrm{v}=(3,-1,2)$ and $\mathrm{w}=(2,0,3)$. Find each of the following.
(i) $(2 u+v) \cdot w$
(ii) $(u-3 v) . w$
(c) Find the cosine of angle between $u(1,2,3)$ and $v(3,-2,1)$
(d) Determine the value of a so that $\mathrm{A}=2 \mathrm{i}+\mathrm{aj}+\mathrm{k}$ and $\mathrm{B}=4 \mathrm{i}-2 \mathrm{j}-2 \mathrm{k}$ are perpendicular:
(e) Find the projection of $\mathrm{A}=\mathrm{i}-2 \mathrm{j}+\mathrm{k}$ on vector $\mathrm{B}=4 \mathrm{i}-4 \mathrm{j}+7 \mathrm{k}$

Question 4 (20 marks)

4. (a). Given a set of vector $\mathbf{u}=2 \mathrm{i}+\mathrm{j}+\mathrm{k}$ and $\mathbf{v}=3 \mathrm{i}-2 \mathrm{j}-\mathrm{k}$

Find (i) $\mathbf{u x v}$
(ii) The sine of the angle between \mathbf{u} and \mathbf{v}
(b) Show that $\mathbf{a}=\mathrm{i}+2 \mathrm{j}+3 \mathrm{k}, \mathbf{b}=4 \mathrm{i}+5 \mathrm{j}+6 \mathrm{k}$ and $\mathbf{c}=7 \mathrm{i}+8 \mathrm{j}+9 \mathrm{k}$ all lie on the same plane:
(c) State and prove the distributive Law of cross products:
(d) If $2 x+4 y-5 z$ is an equation of a plane. Find the normal vector and a point on this plane:

Question 5 (20 marks)

5. (a). Find a unit vector parallel to a resultant vector $r_{1}=2 i+4 j-5 k$, $r_{2}=I+2 j+3 k$
(b). Show if $\mathrm{i}+2 \mathrm{j}+3 \mathrm{k}=\mathrm{u}$ and $3 \mathrm{i}+\mathrm{j}+\mathrm{k}=\mathrm{v}$ are orthogonal.
(c) Write a parametric equation for a plane whose Cartesian equation is $X+2 y-z=7$
(d). $2 x+4 y-5 z=11$. Is an equation of a plane. Find the normal vector and a point on this plane
e). Find the volume of a parallelopipe determine by the vectors $(-1,2,3),(2,-1,1)$, $(3,-2,3)$
