Mount Kenya

University

UNIVERSITY EXAMINATION 2010/2011

SCHOOL OF BUSINESS AND PUBLIC MANAGEMENT DEPARTMENT OF ACCOUNTING AND FINANCE

BACHELOR OF

UNIT CODE: 112

DATE: APRIL 2011

TITLE:BBM
MAIN

TIME:2HRS

Answer question one compulsory and any other two questions.

Questions one (compulsory 30 mks)

a) Given that $\{\mathrm{t} 1,2,3,4,5,6,7,8,9,10,11,12\}$,
$A=\{$ prime number $\} B=\{$ even numbers $\}$
i) Find $A \cap B(1 m k)$
ii) Find $\{A \cup B\}(1 \mathrm{mk})$
B) A mixed hockey team containing 5 men and 6 women is to be chosen from 7 men and 9 women. In how many ways can this be done? (3mks)
c) Write $\sqrt{63}$ as the simplest possible suced. (2mks)
d) Given that $\mathrm{f}(\mathrm{x})=25-\mathrm{x}^{2}$ and that $\mathrm{g}(\mathrm{x})=\sqrt{x}$ find $\mathrm{fg}(\mathrm{x})(2 \mathrm{mks})$
e) Given that $\mathrm{p}=\left(\begin{array}{cc}3 & 4 \\ -4 & 3\end{array}\right)$ and $\mathrm{A}=\left(\begin{array}{ll}2 & 0 \\ 0\end{array}\right)$ find the matrix m , where $\mathrm{m}=\mathrm{p}^{-1} \mathrm{Ap}$
f) Use product rule to differentiate the expression $=\left(x^{2}-3\right)(x+1)^{2}(4 m k s)$
g) Evaluate $\int 3(5 x-25 x) \mathrm{dx}(4 \mathrm{mks})$
h) Find the seventh term in the Binomia expansion $\left(2+\frac{1}{4} x\right) 8$ (3mks)
i) solve the equation $3^{2 y-5}=2^{y-2}$ (3mks)
j) Evaluate without using tables or calculator

$$
\begin{equation*}
\sqrt{10 g 4096} \sqrt{1+\frac{1}{2} \log o .16+\frac{1}{3} \log 8} \tag{3mks}
\end{equation*}
$$

QUESTION TWO (2MKS)
a) Solve the following matrix equation (use a matrix method)
$\left(\begin{array}{ll}5 & 3 \\ 8 & 5\end{array}\right)\left(\begin{array}{ll}u & x \\ v & y\end{array}\right)=\left(\begin{array}{ll}2 & 3 \\ 3 & 4\end{array}\right)$ (4mks)
b) Evaluate the definite integral $\int 1(x-1)(2 x+1) d x$
c) Solve the following pairs of simultaneous equations involving logarithims.
$2 \log x=\log (y+13)$
$\log (x-y)=0(4 m k s)$
d) Express the following statement in form of $\int 5$

$$
\sqrt{112-} \int 20
$$

$\sqrt{140-\int 45}(4 \mathrm{mks})$
e) Expand the following into ascending powers of x upto and including $x 3\left(1+\frac{x}{12}\right) 6$
use your expansion to evaluate $\left(\frac{5}{4}\right) 6$ (4 mks)

