MATHEMATICS PAPER 2

KAGONDO SECONDARY SCHOOL

MID TERM 12013

SECTION A (50 MKS)

Attempt all questions in this section

1.Using a calculator, simplify.
$[1.32 \times 1.62+2.64 \times 1.19] /[0.66 \times 7.27-0.66 \times 2.27](2 \mathrm{mks})$
2.Use matrix method to determine the co-ordinates of the point of intersection of the two lines (3mks)
3.P and Q are the points on the end of the diameter of the circle below

Write down in terms of x and y the equation of the circle in the form
$a x^{2}+b y^{2}+x+y+c=0(2 m k s)$
4. Coffee at sh. 50 per kilogram is mixed with coffee of sh. 60 per kilogram in the ratio $2: 3$. What ratio should this mixture be mixed with coffee at sh. 40 to produce a coffee costing sh. 52 per kilogram (3 mks)
5.A fraction $2 / 7$ truncated to 3 decimal places. Find the percentage error in doing this (3 mks)
6.A bag contains y red balls and $(y-10)$ blue ones. The probability of drawing at random a red ball is 0.75 . Find
i) The number of balls in the box (3 mks)
ii)The probability of drawing at random a blue ball (1mk)
7.Make x the subject of the formula (3mks)
$W=V[(x-p) /(x-q)]$
9.The sum of the first four terms of an arithmetic progression is 14 .If the sum of the first eight terms is 108 , find the sixth term of this progression (3mks)
10.Solve the equation $8 \operatorname{Cos}^{2} \varnothing+2 \operatorname{Cos} \varnothing-3=0$, for $0^{\circ} \leq \varnothing \leq 360^{\circ}$ (3mks)
11.Without using tables, rationalize the denominator in
$\left(2 \tan 45^{\circ}-\tan 60^{\circ}\right) /\left(4 \tan 45^{\circ} \sin 30^{\circ}-\mathrm{V} 3\right) \quad(3 \mathrm{mks})$
12.Factorise $x^{2}-y^{2}$, hence evaluate $3282^{2}-3272^{2}$ (3mks)
13. In the figure below, $D C=6 \mathrm{~cm}, A B=5 \mathrm{~cm}$. Determine $B C$ if $D C$ is a tangent (3 mks)

14.Expand and simplify $(1-3 x)^{5}$, Hence use your expansion up to the term x^{3} to estimate $(0.94)^{5}$ correct to 4 significant figures (4mks)

15 Grade A tea costs Ksh 100 per kg while grade B costs Ksh 150 per kg. Find the ratio in which the two grades should be mixed to get a mixture worth ksh. 140 per kg (3 mks)
16.The average of the first and fourth terms of a GP is 140 . Given that the first term is 64 .Find the common ratio (3mks)
17.The masses of 50 students in a form 4 class were taken and recorded as in the table below

Mass (Kg)	$40-42$	$43-45$	$16-48$	$49-51$	$52-58$	$59-69$
Frequency	3	11	20	9	5	2

a)calculate the median mass (4 mks)
b)Calculate the semi-interquartile range (4mks)
c) If the student are arranged in order from the highest to the heaviest, find mass of the $45^{\text {th }}$ student (2mks)
18. Water flows through a cylindrical pipe of diameter 3.5 cm at a speed of $45 \mathrm{~m} /$ minute.
a)Calculate the volume of water delivered by the pipe in one minute in liters (3mks)
b) A cylindrical storage tank height 4 meters is filled by water from this pipe at the same rate of flow.

Water started flowing at 8.00 a.m. and was filled up at 2.50 p .m. Calculate the area of the cross section of this tank (4mks)
c) Water costs sh. 3.50 per thousand liter plus a fixed standing charge of sh.18.50. Calculate the cost of a family which consumes the capacity of this tank in one month (3mks)
19.Use ruler and pair of compasses only in this question
a)Construct triangle $A B C$ such that $A B=6 \mathrm{~cm}, A C=B C$ and triangle $A C B=135^{\circ}$ (4mks)
b)On one side only construct the locus o'p such that
i) $<\mathrm{APB}=67.5^{\circ}$ (1mk)
ii) area of triangle, $\mathrm{APB}=9 \mathrm{~cm}^{2}(3 \mathrm{mks})$
c)i)locate P1 and P2 the two possible positions of P which satisfy the two conditions above (1mk)
ii)measure the distance between P1 and P2 (1mk)

