CHUKA

UNIVERSITY EXAMINATIONS

FIRST YEAR EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE (GENERAL), BACHELOR OF SCIENCE (COMPUTER SCIENCE) AND BACHELOR OF EDUCATION (ARTS)

PHYS 112: MECHANICS

STREAM: B.SC. (GEN.), B.SC (COMP.SCI) \& TIME: 2 HOURS B.ED (ARTS) Y1S1

DAY/DATE: THURSDAY 9/12/2010
11.30 A.M. - 1.30 P.M

INSTRUCTIONS:

- Question ONE is compulsory and carries 40 marks.
- Other questions carry 15 marks.
- Answer question one and any other TWO.
Q. 1 (a) Given below are some statements. Decide whether they are true or false giving reasons for your choice.
(i) A car covers the first half of its distance between two places at a speed of $40 \mathrm{~km} / \mathrm{hr}$ and the second half at $60 \mathrm{~km} / \mathrm{hr}$. The average speed of the car is then $50 \mathrm{~km} / \mathrm{hr}$.
(ii) It is possible to sometimes have a single isolated force.
[2 marks]
(iii) The total energy of a body in motion is equal to the work it can do in being brought to rest.
[2 marks]
(iv) The outside "horses" on a merry go round get more acceleration than the inside ones.
[2 marks]
(iv) A quick collision between two bodies is more violent than a slow collision even when the initial and the final velocities are identical.
[2 marks]
(b) Three vectors are given as follows:

$$
\begin{aligned}
& \bar{A}=i-3 j \\
& \bar{B}=2 i+4 j \\
& \bar{C}=2 i+j-4 j
\end{aligned}
$$

(i) Show that $\bar{A} \times \bar{B}=-\bar{B} \times \bar{A}$
(ii) Find $\bar{A} \cdot(\bar{B} \times \bar{C})$
(c) (i) State the work-energy principle.
[11/2 marks]
(ii) A coin of mass 3.2 g is dropped vertically to a floor a distance of 11 m . Determine the speed of the coin just before it hits the floor.
[3 marks]
(d) (i) Distinguish between elastic and inelastic collision. [1½ marks]
(ii) A particle of mass $=70 \mathrm{~g}$ is initially at rest. Another particle of mass $\mathrm{M}_{2}=35 \mathrm{~g}$ moving with a velocity of $1.9 \mathrm{~ms}^{-1}$ collides with M_{2} elastically. What are the velocities of the two particles after the collision?
[4 marks]
(e) From the top of a tower of height 50 m , a ball is thrown vertically upward with a certain velocity. It hits the ground 10 s after it is thrown up. With what velocity is that ball projected?
[4 marks]
(f) A car of mass 1200 Kg falls vertically a distance of 24 m starting from rest. What is the work done by the force of gravity on the car? Use the workenergy theorem to find the final velocity of the car just before it hits the ground. (Treat the car as pointlike).
[6 marks]
(6) A train has to negotiate a curve of radius 300 m . By how much will the outer rails be raised with respect to the inner rail for a speed of $54 \mathrm{~km} \mathrm{~h}^{-1}$? The distance between the rail is 1.5 m . (Take $\mathrm{g}=10 \mathrm{~ms}^{-1}$). [4 marks]
Q. 2 (a) Two forces are given by $\bar{F}_{1}=2 \mathrm{j}+3 \mathrm{k}$ and $\overline{F_{2}}=-4 \mathrm{j}-5 \mathrm{j}$. Calculate the resultant force and the angle between the forces.
(b) A particle has shifted along some trajectory in the plane xy from point 1 whose radius vector $\overline{r_{1}}=i+2 \mathrm{j}$ to point 2 with the radius vector $\overline{r_{2}}=2 i-3 \mathrm{j}$. During that time the practice experienced the action of certain forces, one of which $\bar{F}=3 i+4 \mathrm{j}$. Find the work performed by the force \bar{F}. (Here $\overline{r_{1}}, \overline{r_{2}}$ and \bar{F} are given in SI units)
(c) A string of length 1 m is fixed at one end and carries a mass of 100 g at the other end. This string makes 2 revolutions per second around a vertical axis passing through its second end.

Calculate

(i) Angle of inclination of the string with the vertical. [4 marks]
(ii) The tension in the string. [2 marks]
(iii) The linear velocity of the mass. [2 marks]
Q. 3 (a) State the principle of conservation of linear momentum. [2 marks]
(b) Two masses M_{1} and M_{2}, where $\mathrm{M}_{1}=2.0 \mathrm{~kg}$, moving at $80 \mathrm{i} \mathrm{m} / \mathrm{s}$ collided with a mass $\mathrm{M}_{2}=6.0 \mathrm{~kg}$ moving in the same direction at $2.0 \mathrm{i} \mathrm{m} / \mathrm{s}$. If the collision is elastic, determines the velocities of each of the two masses after the collision.
(c) A bullet of mass 10 g moving vertically upwards with a speed V $(500 \mathrm{~m} / \mathrm{s})$ as shown embeds itself

In a wooden block of mass 2 kg ., to what maximum height does the block rise above its initial position?
[6 marks]
(i) State the law of universal gravitation.
(ii) What is the magnitude of gravitational force between a $70-\mathrm{kg}$ man and a $70-\mathrm{kg}$ woman separated by a distance of 10 ? Treat both masses as particles.
(b) An artificial satellite is describing an equatorial orbit at 1600 km above the surface on the earth.
(i) Calculate its orbital speed and the period of revolution.
[5 marks]
(ii) If the satellite is traveling in the same direction as the rotation of the earth (i.e. from west to east). Calculate the vertically overhead to an observer at a fixed point on the equator.
(Radius of earth $=6400 \mathrm{~km}$).

