CHUKA

UNIVERSITY

COLLEGE

UNIVERSITY EXAMINATIONS

FIRST YEAR EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE (GENERAL), BACHELOR OF SCIENCE (COMPUTER SCIENCE) AND BACHELOR OF EDUCATION (ARTS)

PHYS 112: MECHANICS

STREAM: B.SC. (GEN.), B.SC (COMP.SCI) & TIME: 2 HOURS B.ED (ARTS) Y1S1

DAY/DATE: THURSDAY 9/12/2010 11.30 A.M. – 1.30 P.M INSTRUCTIONS:

- Question ONE is compulsory and carries 40 marks.
- Other questions carry 15 marks.
- Answer question one and any other TWO.
- Q.1 (a) Given below are some statements. Decide whether they are true or false giving reasons for your choice.
 - (i) A car covers the first half of its distance between two places at a speed of 40 km/hr and the second half at 60 km/hr. The average speed of the car is then 50 km/hr. [2 marks]
 - (ii) It is possible to sometimes have a single isolated force. [2 marks]
 - (iii) The total energy of a body in motion is equal to the work it can do in being brought to rest. [2 marks]
 - (iv) The outside "horses" on a merry go round get more acceleration than the inside ones. [2 marks]
 - (iv) A quick collision between two bodies is more violent than a slow collision even when the initial and the final velocities are identical.[2 marks]

(b) Three vectors are given as follows:

		$\overline{A} = i - 3j$			
		$\overline{B} = 2i + 4j$			
		$\overline{C} = 2i + j - 4j$			
	(i)	Show that $\overline{A} \ge \overline{B} = -\overline{B} \ge \overline{A}$	[3 marks]		
	(ii)	Find $\overline{A} . (\overline{B} \ge \overline{C})$	[3 marks]		
(c)	(i)	State the work-energy principle.	[1½ marks]		
	(ii)	A coin of mass 3.2g is dropped vertically to a floor of 11m. Determine the speed of the coin just before floor.	a distance it hits the [3 marks]		
(d)	(i)	Distinguish between elastic and inelastic collision.	[1 ¹ /2 marks]		
	(ii)	A particle of mass = 70g is initially at rest. Another mass $M_2 = 35g$ moving with a velocity of $1.9ms^{-1}$ coelastically. What are the velocities of the two partic collision?	particle of ollides with M ₂ les after the [4 marks]		
(e)	From the top of a tower of height 50m, a ball is thrown vertically upward with a certain velocity. It hits the ground 10s after it is thrown up. With what velocity is that ball projected? [4 marks]				
(f)	A car of mass 1200Kg falls vertically a distance of 24m starting from rest. What is the work done by the force of gravity on the car? Use the work- energy theorem to find the final velocity of the car just before it hits the ground. (Treat the car as pointlike). [6 marks]				
(6)	A train has to pagatista a surve of radius 200m. By how much will the				

(6) A train has to negotiate a curve of radius 300m. By how much will the outer rails be raised with respect to the inner rail for a speed of 54km $h^{-1?}$. The distance between the rail is 1.5m. (Take g = 10ms⁻¹). [4 marks]

- Q.2 (a) Two forces are given by $\overline{F}_1 = 2j + 3k$ and $\overline{F}_2 = -4j 5j$. Calculate the resultant force and the angle between the forces. [4 marks]
 - (b) A particle has shifted along some trajectory in the plane xy from point 1 whose radius vector $\overline{r_1} = i + 2j$ to point 2 with the radius vector $\overline{r_2} = 2i - 3j$. During that time the practice experienced the action of certain forces, one of which $\overline{F} = 3i + 4j$. Find the work performed by the force \overline{F} . (Here $\overline{r_1}$, $\overline{r_2}$ and \overline{F} are given in SI units) [3 marks]
 - (c) A string of length 1m is fixed at one end and carries a mass of 100g at the other end. This string makes 2 revolutions per second around a vertical axis passing through its second end.

Calculate

(i)	Angle of inclination of the string with the vertical.	[4 marks]
(ii)	The tension in the string.	[2 marks]
(iii)	The linear velocity of the mass.	[2 marks]

- Q.3 (a) State the principle of conservation of linear momentum. [2 marks]
 - (b) Two masses M_1 and M_2 , where $M_1 = 2.0$ kg, moving at 80i m/s collided with a mass $M_2 = 6.0$ kg moving in the same direction at 2.0i m/s. If the collision is elastic, determines the velocities of each of the two masses after the collision. [7 marks]
 - (c) A bullet of mass 10g moving vertically upwards with a speed V (500 m/s) as shown embeds itself

In a wooden block of mass 2kg., to what maximum height does the block rise above its initial position? [6 marks]

Q.4	(a)	(i)	Define centripetal acceleration.	[2 marks]		
		(ii)	A rotating object increases its speed from rest to 25 Find the linear acceleration of a point 0.25m from t rotation.	5 rad s ⁻¹ in 10s. he axis of [2 marks]		
	(b)	A cricket ball of mass 150g is moving with a velocity of 12ms ⁻¹ and is h by a bat so that the bull is turned back with a velocity of 20ms ⁻¹ . The force of the blow acts for 0.01s. Find the average force exerted on the b by the bat. [5 marks]				
	(c)	The driver of a train A, moving with a uniform speed of 144 kh hr ⁻¹ sight another train B, 1km ahead of him. The train B is moving with a uniform speed of 108 km hr ⁻¹ . The driver of train A immediately applies brakes producing a constant retardation and just manages to avoid a collision.				
		(i) (ii)	What is the retardation of train A? For how long is this retardation produced?	[6 marks]		
Q.5	(a)	(i)	State the law of universal gravitation.	[2 marks]		
		(ii)	What is the magnitude of gravitational force betwe and a 70-kg woman separated by a distance of 10? masses as particles.	en a 70-kg man Treat both [3 marks]		
	(b)	An artificial satellite is describing an equatorial orbit at 1600 km above the surface on the earth.				
		(i)	Calculate its orbital speed and the period of revolut	ion. [5 marks]		
		(ii)	If the satellite is traveling in the same direction as t the earth (i.e. from west to east). Calculate the vert to an observer at a fixed point on the equator. (Radius of earth = 6400 km).	he rotation of fically overhead [5 marks]		