ICS 2108

 [image: image1.emf]
JOMO KENYATTA UNIVERSITY

OF

AGRICULTURE AND TECHNOLOGY

UNIVERSITY EXAMINATIONS JAN-APRIL 2015

OF

 BACHELOR OF BUSINESS FINANCE

 ICS 2108: PROGRAMMING METHODOLOGY
DATE: APRIL 2015

TIME: 2 HOURS
INSTRUCTIONS:

1. Answer question ONE (section A) and any other two questions in section B.

2. All questions except question one carry equal marks

SECTION A (30 MARKS)

QUESTION 1
a. Discuss the meaning of programming in the context of computing and explain under what situations are writing programs of help to humans. (8 Marks)
b. Explain the Queue concept of abstract data type. (6 Marks)
c. Set is defined as an unordered collection of values where each value occurs at most once. A group of elements with three properties: (1) all elements belong to a universe, (2) either each element is a member of the set or it is not, and (3) the elements are unordered.

State the axiomatic semantics (code) representation of the same. (5 marks)

d. Write a simple C++program that would display “I am a student of JKUAT at the STACS department majoring in BAS”. (5 marks)
e. Outline the basic components of a program.
 (6 marks)
 SECTION B (20 MARKS EACH)

Q2

a.Outline the three most common concepts and structures used in all programming languages. (7 marks)
b.The principles of structured programming include a technique that takes a top-down design approach with block-oriented structures. Discuss the concept. (7marks)
c.Explain the term stack in reference to data structure. (6marks)
Q 3
a. All programs are seen as composed of three control structures. Discuss the meaning of the term control structure outlining the three components. (8Marks)
b. Write a code in C programming language that would declare the following variables age, middle initial name and salary. (6 marks)
c. State and explain any three benefits of using modular programming. (6marks)
Q 4
a. Discuss the concept of modular programming explaining the benefits. (7 Marks)
b. Discuss Encapsulation and Abstraction in the concept of object oriented programming. (8 Marks)
c. We would like to be able to store the following data in such a way that improves how we can search for a person later on, construct a binary tree to store the names and ages to our satisfaction.
	Name
	Age

	Bailey
	41

	Brown
	27

	Green
	21

	Jones
	38

	Smith
	35

	Taner
	63

	Vespa
	31

 (10 marks)
 [image: image2.emf]
JOMO KENYATTA UNIVERSITY

OF

AGRICULTURE AND TECHNOLOGY

UNIVERSITY EXAMINATIONS JAN-APRIL 2015

OF

 BACHELOR OF BUSINESS FINANCE

 ICS 2108: PROGRAMMING METHODOLOGY
DATE: APRIL 2015

TIME: 2 HOURS
INSTRUCTIONS:

1. Answer question ONE (section A) and any other two questions in section B.

2. All questions except question one carry equal marks

SECTION A (30 MARKS)

QUESTION 1
a. In the context of computing, programming means creating a set of instructions not for a person but for a computer, in order to accomplish a specific task. To do so you use a set of directives—a programming language—known to both the programmer and the computer operating system. The kind of things we program computers to do is different from what we “program” ourselves to do. Usually a set of instructions, or program, for a computer is intended to complete a task that:

· Is repetitious, and therefore would exceed human patience or capacity for long term attention to detail;

· Controls machinery in conditions unsuitable for humans because of physical limitations, hazardous conditions, etc.;

· Requires a high degree of accuracy;

· Requires high speed. (8 Marks)
b Definition: A collection of items in which only the earliest added item may be accessed. Basic operations are add (to the tail) or enqueue and delete (from the head) or dequeue. Delete returns the item removed. Also known as "first-in, first-out" or FIFO.

Formal Definition: It is convenient to define delete or dequeue in terms of remove and a new operation, front. The operations new(), add(v, Q), front(Q), and remove(Q) may be defined with axiomatic semantics as follows.

1. new() returns a queue

2. front(add(v, new())) = v

3. remove(add(v, new())) = new()

4. front(add(v, add(w, Q))) = front(add(w, Q))

5. remove(add(v, add(w, Q))) = add(v, remove(add(w, Q)))

where Q is a queue and v and w are values. (6 Marks)
1. c. new() returns a set

2. isIn(v, new()) = false

3. isIn(v, add(v, S)) = true

4. isIn(v, add(u, S)) = isIn(v , S) if v ≠ u

5. remove(v, new()) = new()

6. remove(v, add(v, S)) = remove(v, S)

7. remove(v, add(u, S)) = add(u, remove(v, S)) if v ≠ u

where S is a set and u and v are elements. (5 marks)

d
include <iostream>”
int (main)

{

Std::cout <<“I am a student of JKUAT at the STACS department majoring in BAS.” << std::end;
Return 0;

} (5 marks)
e. Outline the basic components of a program.
 (6 marks)
 SECTION B (20 MARKS EACH)

Q2

a. Sequence of commands (The right commands in the right order.)

It is important not only to give the right commands or steps—they must also be given in the correct sequence. We can easily see in some of our mundane examples—making a sandwich, tying one's shoes, following a recipe—that proper order is essential to our success. We might call such obvious sequences task order, because the proper sequence is dictated by the nature of the task.

Conditional structures (Do certain things based on a true or false, yes or no decision.)
These provide for one outcome or sequence of events to be executed if a statement is true, and another outcome or sequence of events to be triggered if the statement is false.

In most programming languages these structures take the form if . . . then . . . else.

 Pseudo code
This term, from the prefix pseudo-, 'false' and the root word code, 'programming instructions', describes a way of representing the detailed steps your program must perform without having to worry about the specific vocabulary or syntax of a specific programming language. You use your knowledge of the basic control structures, common sense and logic to write plain-English statements to explain in detail how you will accomplish each main step. (7 marks)
b. Top-down design is a way of approaching a complex programming task by first mapping out the entire program and identifying the major components that it will require. Then the programmer would use flowcharts and general statements to represent the logical flow of your program. Once the major components are identified, the programmer then focuses on each component in greater detail, finally culminating in writing the actual program code for creating each component. (7marks)
c Definition: A collection of items in which only the most recently added item may be removed. The latest added item is at the top. Basic operations are push and pop. Often top and is Empty are available, too. Also known as "last-in, first-out" or LIFO.

Formal Definition: The operations new(), push(v, S), top(S), and popoff(S) may be defined with axiomatic semantics as follows.

1. new() returns a stack

2. popoff(push(v, S)) = S

3. top(push(v, S)) = v

where S is a stack and v is a value. The pop operation is a combination of top, to return the top value, and popoff, to remove the top value. (6marks)
Q 3

a. A control structure is just a decision that the computer makes based on the variables that you give it.

All programs are seen as composed of three control structures:

Sequence is an ordered statements or subroutines executed in sequence.

Selection- one or a number of statements is executed depending on the state of the program. This is usually expressed with keywords such as if..then..else..endif.

Iteration- a statement or block is executed until the program reaches a certain state, or operations have been applied to every element of a collection. This is usually expressed with keywords such as while, repeat, foror do..until. Often it is recommended that each loop should only have one entry point (and in the original structural programming, also only one exit point, and a few languages enforce this). (8Marks)
b. #include <stdio.h>

void main() {

 int age;

 float salary;

 char middle_initial;

 age = 21;

 salary = 29521.12;

 middle_initial = "K";

 printf("I am %d years old ", age);

 printf("I make %8.2f per year " salary);

 printf("My middle initial is %c ", middle_initial);

} (6 marks)
· c. Less code has to be written.

· A single procedure can be developed for reuse, eliminating the need to retype the code many times.

· Programs can be designed more easily because a small team deals with only a small part of the entire code.

· Modular programming allows many programmers to collaborate on the same application.

· The code is stored across multiple files.

· Code is short, simple and easy to understand.

· Errors can easily be identified, as they are localized to a subroutine or function.

· The same code can be used in many applications.

· The scoping of variables can easily be controlled. (6marks)
Q 4

a. Modular programming is subdividing your program into separate subprograms such as functions and subroutines. Use these. For example, if your program needs initial and boundary conditions, use subroutines to set them. Then if someone else wants to compute a different solution using your program, only these subroutines need to be changed. This is a lot easier than having to read through a program line by line, trying to figure out what each line is supposed to do and whether it needs to be changed. And in ten years from now, you yourself will probably no longer remember how the program worked.

· Subprograms make your actual program shorter, hence easier to read and understand. Further, the arguments show exactly what information a subprogram is using. That makes it easier to figure out whether it needs to be changed when you are modifying your program. Forgetting to change all occurrences of a variable is a very common source of errors.

· Subprograms make it simpler to figure out how the program operates. If the boundary conditions are implemented using a subroutine, your program can be searched for this subroutine to find all places where the boundary conditions are used. This might include some unexpected places, such as in the output, or in performing a numerical check on the overall accuracy of the program.

· Subprograms reduce the likelyhood of bugs. Because subprograms can use local variables, there is less change that the code in the subroutine interferes with that of the program itself, or with that in other subprograms. The smaller size of the individual modules also makes it easier to understand the global effects of changing a variable.

· Perform your output using a subprogram. You tend to become more careless when programming a `noncritical' program part such as output. Also, output often requires additional variables not of interest to the rest of the program. The code for output tends to be lengthy, hence your program will become shorter and easier to read if you move output to a subroutine. (7 Marks)
b. Encapsulation (or Information Hiding)

The encapsulation is the inclusion-within a program object-of all the resources needed for the object to function, basically, the methods and the data. In OOP the encapsulation is mainly achieved by creating classes, the classes expose public methods and properties. A class is kind of a container or capsule or a cell, which encapsulate a set of methods, attribute and properties to provide its indented functionalities to other classes. In that sense, encapsulation also allows a class to change its internal implementation without hurting the overall functioning of the system. That idea of encapsulation is to hide how a class does its business, while allowing other classes to make requests of it.

. Encapsulation

2. Abstraction- Abstraction is an emphasis on the idea, qualities and properties rather than the particulars (a suppression of detail). The importance of abstraction is derived from its ability to hide irrelevant details and from the use of names to reference objects. Abstraction is essential in the construction of programs. It places the emphasis on what an object is or does rather than how it is represented or how it works. Thus, it is the primary means of managing complexity in large programs. (8 Marks)

c.
First, find the median value (the value that appears closest to the middle) of the list and make that the root node. In this example, “Jones” appears to be in the middle of the list so we can make Jones the root node.

Next, look at the all of the values that come before Jones in the list: Bailey, Brown and Green. Choose the median of these three and make it the left child of Jones. Repeat this process with the bottom half of the list (after Jones) to establish the right child of Jones.

Finally, repeat the process again for the next level by taking Brown and Taner each as parents. The resulting tree looks like the following:

[image: image3.png]

:

. (10 marks)
