\qquad
\qquad
Date \qquad

121/1
MATHEMATICS ALT A

PAPER 1

OCT / NOV 2014
$21 / 2$ HOURS

KIBWEZI DISTRICT FORM 4 INTER-SCHOOLS EXAMINATION
 Kenya Certificate of Secondary Education (K.C.S.E)
 MATHEMATICS ALT A
 PAPER 1
 $2 ½$ HOURS

INSTRUCTIONS TO CANDIDATES

1. Write your name and admission number in the spaces provided above.
2. Sign and write the date of examination in the spaces provided.
3. The paper contains two sections: Section I and II.
4. Answer all questions in section I and only five questions from section II.
5. All answers and working must be written on the question paper in the spaces provided below each question.
6. Show all the steps in your calculations, giving your answers at each stage in the spaces below each question.
7. Marks may be given for correct working even if the answer is wrong.
8. Non-programmable silent electronic calculators and KNEC mathematical tables may be used except where stated otherwise.

FOR EXAMINER'S USE ONLY

SECTION I

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Total

SECTION II

17	18	19	20	21	22	23	24	Total

GRAND TOTAL

Candidates should check carefully to ascertain that all the pages are printed as indicated and no questions are missing.

SECTION I - 50 MARKS

1. Evaluate: $\quad 2 / 5$ of $12 / 3-1 / 2 \sqrt{\frac{1^{2} / 3-21 / 2}{1 / 3-{ }^{19} / 27}}+{ }^{2 / 3}$
2. Solve for x in the equation
$2^{2 \mathrm{x}-1} \mathrm{x}\left({ }^{1} / 8\right)^{1-\mathrm{x}}=4^{3 \mathrm{x}+1}$
3. Juma deposited sh. 4,500 in a bank which paid compound interest at 12% p.a Calculate the amount after two years.
4. Four men can dig 2 acres of land in 3 days working 4 hours a day. How many men are required to dig 5 acres of land in 4 days working 3 hours a day at the same rate? (3 marks)
5. A two digit number is such that the sum of the digits is 12 . If the digits are interchanged the value of the new number formed is fifteen more than twice the value of the original number.
Find the original number.
(4 marks)
6. In the quadrilateral ABCD below, angle $\mathrm{BAD}=40^{\circ} . \mathrm{AB}$ is extended to E and angle $\mathrm{CBE}=30^{\circ}$, $\mathrm{AB}=\mathrm{AD}$ and $\mathrm{BD}=\mathrm{BC}$.

Calculate the value of angle BCD.
7. Use the tables of squares, cube roots and reciprocals to evaluate

$$
\frac{\sqrt[3]{0.008}}{0.375}-\frac{10}{37.5^{2}}
$$

8. Make t the subject of the formula:

$$
Q=\left(\frac{b-t}{t}\right)^{1 / 2} \quad \text { Hence evaluate } t \text { when } b=20 \text { and } Q=3
$$

(4 marks)
9. Simplify completely
$\frac{3(x+y)}{x^{2}+x y-2 y^{2}}+\frac{3 x+y}{x^{2}-y^{2}}$ (3 marks)
10. The figure below is a velocity time graph for a car

(a) Find the total distance traveled by the car.
(2 marks)
(b) Calculate the deceleration of the car.
11. The gradient of a line L through $A(2 x, 4)$ and $B(-1, x)$ is $\frac{1}{7}$. Find the equation of a line perpendicular to L through B.
12. Solve the inequality $3-2 \mathrm{x}<\mathrm{x} \leq \frac{2 \mathrm{x}+5}{3}$

State the integral values which satisfy these inequalities.
13. Draw the line $\mathrm{AB}=4 \mathrm{~cm}$, hence draw the locus of point P such that $\angle \mathrm{APB}=60^{\circ}$. $(3$ marks $)$
14. Point Q is 2400 nautical miles to the east of point $\mathrm{P}\left(60^{\circ} \mathrm{N}, 35.8^{\circ} \mathrm{W}\right)$. Find the longitude of Q .
15.

The figure above is a triangular prism of uniform cross-section in which $\mathrm{AF}=4 \mathrm{~cm}$, $\mathrm{AB}=5 \mathrm{~cm}$ and $\mathrm{BC}=8 \mathrm{~cm}$.
(a) If angle $\mathrm{BAF}=30^{\circ}$, calculate the surface area of the prism.
(3 marks)
(b) Draw a clearly labeled net of the prism.
16. A man imported a vehicle at sh. 600,000 and sold it at sh. 1,080,000. Find his percentage profit if he spent sh. 60,000 for clearing the vehicle from the port and a further sh. 40,000 for shipping.

SECTION II - 50 MARKS

17. (a) On the grid provided draw the square whose vertices are $\mathrm{A}(6,-2), \mathrm{B}(7,-2), \mathrm{C}(7,-1)$ and $\mathrm{D}(6,-1)$.
(1 mark)
(b) On the same grid draw
(i) $A^{1} B^{1} C^{1} D^{1}$ the image of $A B C D$, under an enlargement scale factor 3 , centre (9,-4).
(ii) $\mathrm{A}^{11} \mathrm{~B}^{11} \mathrm{C}^{11} \mathrm{D}^{11}$, the image $\mathrm{A}^{1} \mathrm{~B}^{1} \mathrm{C}^{1} \mathrm{D}^{1}$ under a reflection in the line $\mathrm{x}=0$. (2 marks)
(iii) $\mathrm{A}^{111} \mathrm{~B}^{111} \mathrm{C}^{111} \mathrm{D}^{111}$, the image of $\mathrm{A}^{11} \mathrm{~B}^{11} \mathrm{C}^{11} \mathrm{D}^{11}$ under a rotation of $+90^{0}$ about the origin.
(c) Describe a single transformation that maps $\mathrm{A}^{1} \mathrm{~B}^{1} \mathrm{C}^{1} \mathrm{D}^{1}$ onto $\mathrm{A}^{111} \mathrm{~B}^{111} \mathrm{C}^{111} \mathrm{D}^{111}$. (2 marks)
18. In the diagram below, O is the center of the circle, AC and BC are tangents to the circle. Angle $\mathrm{AOB}=140^{\circ}$ and the radius of the circle is 10.5 cm .

Calculate;
(a) the length of the chord AB .
(b) the area of the kite OACB.
(c) the shaded area.
19. Using a pair of compasses and ruler only,
(a) Construct triangle $X Y Z$ such that $X Y=8 \mathrm{~cm}, Y Z=6 \mathrm{~cm}$ and angle $X Y Z=30^{\circ}$.
(3 marks)
(b) Measure the length of XZ .
(1 mark)
(c) Draw a circle that touches the vertices X, Y and Z .
(d) Measure the radius of the circle.
(e) Calculate the area of the circle outside the triangle to 2 d.p.
20. The figures below show the weight in kgs of 30 people living near a town.

60	83	57	46	80	32	108	78	75	36

55	45	53	41	61	48	93	42	58	38

50	58	51	63	77	74	49	66	66	60

(a) Make a frequency distribution table taking groups 30-39, 40-49 etc.
(b) State the modal class.
(c) Calculate the
(i) mean (2 dp)
(ii) median (2 dp)
21. (a) Given vector $\overrightarrow{D E}=2 a+b$ and $\overrightarrow{D C}=3 b-a$, express the vector $\vec{C} E$ in terms of a and b in the simplest form.
(b) Given $\overrightarrow{\mathrm{OT}}=\left[\begin{array}{c}-2 \\ 5\end{array}\right]$ and $\overrightarrow{\mathrm{OV}}=\left[\begin{array}{c}5 \\ -1\end{array}\right]$, find the magnitude of the vector quantity VT. (3 marks)
(c) In the figure below, X divides CB in the ratio $1: 3$ and M is the mid point of AB .

(i) Express MX in terms of b and c given that $\overrightarrow{A B}=b$ and $\overrightarrow{A C}=c$.
(ii) Determine the position vector of X .
22. (a) An arithmetic progression (AP) is such that the first term is -5 , the last term is 135 and the sum of the progression is 975 . Calculate:-
(i) the number of terms in the series.
(4 marks)
(ii) the common difference of the progression.
(b) The sum of the first three terms of a Geometric Progression (GP) is 27 and the first term is 36. Determine the common ratio and the value of the fourth term.
23. A port B is on a bearing of 080° from a port A and at a distance of 95 km . A submarine is stationed at port D which is on a bearing of 200° from A and a distance of 124 km from B. A ship leaves B and moves directly southwards to an Island P which is on a bearing of 140° from A. The submarine at D on realizing that the ship was headed for Island P, decided to head for Island P to intercept the ship.
(a) Draw a scale diagram showing the relative positions of A, B, D, and P. Use a scale of 1 cm to represent 20 km .
(4 marks)
(b) Use your diagram to find
(i) the distance from A to D .
(ii) the bearing of the submarine from the ship when the ship was setting off from B. (1 mark)
(iii) the bearing of Island P from D.
(iv) the distance the submarine had to cover to reach Island P .
24. Two towns A and B are 80 km apart. Juma started cycling from town A to town B at 10.00 am at an average speed of $40 \mathrm{~km} / \mathrm{h}$. Mutuku started his journey from town B to town A at 10.30 am and traveled by car at an average speed of $60 \mathrm{~km} / \mathrm{h}$.

Calculate
(i) the distance from town A when Juma and Mutuku met.
(5 marks)
(ii) the time of the day when the two met.
(b) Kamau started cycling from town A to town B at 10.20am. He met Mutuku at the same time as Juma did. Determine Kamau's average speed.

121/1
MATHEMATICS ALT A
PAPER 1
OCT / NOV 2014

KIBWEZI DISTRICT FORM 4 INTER-SCHOOLS EXAMINATION

Kenya Certificate of Secondary Education (K.C.S.E)
MATHEMATICS ALT A

PAPER 1

MARKING SCHEME

SECTION I - 50 MARKS

$\begin{aligned} & 1.5 \times 5 / 3-1 / 2 \sqrt{\frac{5 / 3-5 / 2}{-10 / 27}}+2 / 3 \\ & 2 / 3-1 / 2 \sqrt{\frac{-5 / 6}{-10} / 27}+2 / 3 \\ & 2 / 3-1 / 2 \sqrt{9 / 4}+2 / 3 \\ & 2 / 3-3 / 4+2 / 3 \\ & =7 / 12 \end{aligned}$	M1 M1 A1	
	03	
$\text { 2. } \quad \begin{aligned} & 2^{2 x-1} \times 2^{-3+3 x} \\ & 2 x-1-3+3 x=6 x+2 \\ & 5 x+2 \\ & 5 x-4=6 x+2 \\ & x=-6 \end{aligned}$	M1 A1	
	02	
3. $\begin{aligned} \text { Amount } & =4500\left(1+{ }^{12} / 100\right)^{2} \\ & =4500(1.12)^{2} \\ & =\text { Kshs. } 5,644.80 \end{aligned}$	M1 A1	
	02	
4. $\begin{array}{llllll}\text { M } & \text { A } & \text { D } & \text { H } \\ 4 & 2 & 3 & 4 \\ 7 & 5 & 4 & 3 \\ & & & & & \\ & 5 / 2 \times 3 / 4 & \times 4 / 3 & \times & 4 \\ & & & =10 \text { men }\end{array}$	M1 M1 A1	
	03	

5. Let the number be $x y x+y=12$ $y=12-x$ $\begin{gathered} 10 y+x-2(10 x+y)=15 \\ 8 y-19 x=15 \\ \left.\begin{array}{c} 8(12-x)-19 x=15 \\ 96-8 x-19 x=15 \\ -27 x=-81 \\ x=3 \\ y=12-3=9 \end{array}\right\} \end{gathered}$ $\therefore \text { original number }=39$	M1 M1 A1 B1	
	04	
6. $\begin{aligned} & \text { Angle } \mathrm{ABD}=\frac{180-40}{2}=70^{\circ} \\ & \text { Angle } \mathrm{DBC}=180-\left(70^{\circ}+30^{\circ}\right)=80^{\circ} \\ & \text { Angle } \mathrm{BCD}=\frac{180-80}{2}=50^{\circ} \end{aligned}$	B1 B1 B1	
	03	
7. $\left.\begin{array}{rl} \sqrt[3]{0.008} \quad=0.2 \\ \text { Reciprocal of } 0.375 & =2.6667 \\ 37.5^{2} & =1406 \end{array}\right\}$ Reciprocal of $1406=0.0007$ $\begin{gathered} \therefore 0.2 \times 2.6667-10 \times 0.0007 \\ =0.5264 \end{gathered}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	
	04	
8 . $\begin{aligned} & \mathrm{Q}^{2}=\frac{\mathrm{b}-\mathrm{t}}{\mathrm{t}} \\ & \mathrm{Q}^{2} \mathrm{t}=\mathrm{b}-\mathrm{t} \\ & \mathrm{t}\left(\mathrm{Q}^{2}+1\right)=\mathrm{b} \\ & \Rightarrow \mathrm{t}=\frac{\mathrm{b}}{\mathrm{Q}^{2}+1} \\ & \mathrm{t} \Rightarrow \frac{20}{3^{2}+1}=\frac{20}{10}=2 \end{aligned}$	M1 M1 A1 B1	
$\text { 9. } \begin{aligned} & \frac{3(x+y)}{(x+y)(x+2 y)}+\frac{3 x+y}{(x-y)(x+y)} \\ & \frac{3(x+y)(x-y)+(3 x+y)(x+2 y)}{(x+y)(x+2 y)(x-y)} \end{aligned}$	M1	

$\begin{aligned} & \frac{3 x^{2}-3 y^{2}+3 x^{2}+7 x y+2 y^{2}}{(x+y)(x+2 y)(x-y)} \\ & \frac{6 x^{2}+7 x y-y^{2}}{(x+y)(x+2 y)(x-y)} \\ & \frac{(x+y)(6 x-y)}{(x+y)(x+2 y)(x-y)} \\ & =\frac{6 x-y}{(x+2 y)(x-y)} \\ & \hline \end{aligned}$	M1 $\mathrm{A} 1$	
	03	
10. (a) $\begin{aligned} & 1 / 2 \times 4 \times 80+80 \times 16+1 / 2 \times 4 \times 80 \\ & 160+1280+160 \\ & \quad=1600 \mathrm{~m} \end{aligned}$ (b) $\rightleftarrows \frac{-80}{4}$ $=-20 \mathrm{~m} / \mathrm{s}^{2}$	M1 A1 B1	
	03	
11. $\frac{4-x}{2 x+1}=\frac{1}{7}$ $\begin{gathered} 28-7 x=2 x+1 \\ 27=9 x \\ x=3 \end{gathered}$ Grad. of line $h=-7$ $\begin{aligned} \frac{y-3}{x+1} & =-7 \\ & y=-7 x-4 \end{aligned}$	B1 M1 A1	
	03	
12. $3-2 x<x$ $3<3 x$ $1<x$ Or $x>1$ $\begin{aligned} & 3 x \leq 2 x+5 \\ & x \leq 5 \end{aligned}$ Integral values 2, 3, 4, 5	B1 B1 B1	
	03	
13.	B1 B1 B1	$\sqrt{ }$ construction 30° at A and B $\sqrt{ }$ location of centre O $\sqrt{ }$ locus of P

SECTION II - 50 MARKS

(c) $\begin{gathered} \text { (i) } \left.\begin{array}{c} \mathrm{BC}=\mathrm{c}-\mathrm{b} \quad \mathrm{BX}=3 / 4(\mathrm{c}-\mathrm{b}) \\ \square \quad \square \\ \mathrm{MX}=1 / 2 \mathrm{~b}+3 / 4 \mathrm{c}-3 / 4 \mathrm{~b} \\ \square \quad \square \\ = \end{array}\right]=\mathrm{c} / 4-1 / 4 \mathrm{~b} \end{gathered}$ (ii) $\begin{aligned} & \mathrm{AX}=\mathrm{b}+3 / 4 \mathrm{c}-3 / 4 \mathrm{~b} \\ & \square \\ &=3 / 4 \mathrm{c}+1 / 4 \mathrm{~b} \end{aligned}$		$\begin{aligned} & \hline \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	
		10	
22. (a) (i) $\begin{aligned} & \mathrm{n} / 2(2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d})=975 \\ & \mathrm{n} / 2(-10+140)=975 \\ & \longrightarrow \mathrm{n}=\frac{2 \times 975}{130} \\ & =15 \text { terms } \end{aligned}$ (ii) $\begin{aligned} & -5+14 \mathrm{~d}=135 \\ & 14 \mathrm{~d}=140 \\ & \longrightarrow \mathrm{~d}=10 \end{aligned}$ (b) $\begin{gathered} \mathrm{a}+\mathrm{ar}+\mathrm{ar}^{2}=27(\mathrm{a}=36) \\ 36+36 \mathrm{r}+36 \mathrm{r}^{2}=27 \\ 4 \mathrm{r}^{2}+4 \mathrm{r}+1=0 \\ (2 \mathrm{r}+1)(2 \mathrm{r}+1)=0 \\ \longrightarrow \begin{array}{l} 2 \mathrm{r}+1=0 \\ \mathrm{r}=-1 / 2 \end{array} \\ 4^{\text {th }} \text { term }=36(-1 / 2)^{3} \\ =-41 / 2 \end{gathered}$		M1 M1 M1 A1 M1 A1 M1 M1 A1 B1	$V_{\text {subt }}$ $\sqrt{ }$ subt V fact
		10	
23.	Point A Point B Point D Point P	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	

(b) (i) $2.3 \times 20=46 \mathrm{~km} \quad \pm 1 \mathrm{~km}$ (ii) $241^{0} \pm 1^{0}$ (iii) $123^{0} \pm 1^{0}$ (iv) 6.5×20 $=130 \mathrm{~km} \pm 1 \mathrm{~km}$	B1B1 B1 B1 B1	
	10	
24. (a) (i) $\begin{aligned} & 80-20=60 \mathrm{~km} \\ & 60+40=100 \mathrm{~km} / \mathrm{hr} \\ & \frac{60}{100}=\frac{3}{5} \mathrm{hrs} \text { or } 36 \mathrm{~min} \\ & 3 / 5 \times 40=24 \mathrm{~km} \\ & 24+20 \\ & =44 \mathrm{~km} \end{aligned}$ (ii) 10.30 am $\frac{+36}{11.06 \text { a.m }}$ $\text { (b) } \begin{aligned} & \text { T. Taken } \\ & -\frac{11.06}{46} \\ & \\ & 44 \times{ }^{60} / 46 \\ & \\ & =57.39 \mathrm{~km} / \mathrm{hr} \end{aligned}$	B1 B1 M1 M1 A1 M1 A1 M1 M1 A1	
	10	

\qquad
\qquad
Date \qquad

121/2

MATHEMATICS ALT A

PAPER 2

OCT / NOV 2013
$21 / 2$ HOURS

KIBWEZI DISTRICT FORM 4 INTER-SCHOOLS EXAMINATION

Kenya Certificate of Secondary Education (K.C.S.E)
MATHEMATICS ALT A

PAPER 2

$21 ⁄ 2$ HOURS

INSTRUCTIONS TO CANDIDATES

1. Write your name and admission number in the spaces provided above.
2. Sign and write the date of examination in the spaces provided.
3. The paper contains two sections: Section I and II.
4. Answer all questions in section I and only five questions from section II.
5. All answers and working must be written on the question paper in the spaces provided below each question.
6. Show all the steps in your calculations, giving your answers at each stage in the spaces below each question.
7. Marks may be given for correct working even if the answer is wrong.
8. Non-programmable silent electronic calculators and KNEC mathematical tables may be used except where stated otherwise.

FOR EXAMINER'S USE ONLY

SECTION I

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Total

SECTION II

17	18	19	20	21	22	23	24	Total

GRAND TOTAL

Candidates should check carefully to ascertain that all the pages are printed as indicated and no questions are missing.

SECTION I - 50 MARKS

Answer all the questions in this section

1. Determine the inverse of the matrix .

$$
\mathrm{T}=\left(\begin{array}{rr}
2 & 4 \\
1 & -2
\end{array}\right)
$$

Hence find the co-ordinate to the point at which the two lines $2 x=8-4 y$ and $\mathrm{x}=2 \mathrm{y}+2$ meet.
2. Find the centre and the radius of a circle whose equation is $x^{2}+y^{2}-4 x+6 y-3=0$
3. An electric pole is supported to stand vertically on a level ground by a tight wire. The wire is pegged at a distance of 6 m from the foot of the pole. The angle the wire makes with the ground is 3 times the angle it makes with the pole.
Determine the length of the wire.
4. In a triangle $\mathrm{ABC}, \mathrm{a}=8 \mathrm{~cm}, \mathrm{c}=10 \mathrm{~cm}$ and angle $\mathrm{ABC}=60^{\circ}$. Calculate the values of side b and angle BCA.
5. In the figure below, RN and MS are chords of a circle that meet at an external point P .

PQ is a tangent to the circle at Q . Given that $\mathrm{PR}=2 \mathrm{~cm}, \mathrm{PN}=12 \mathrm{~cm}$ and $\mathrm{PM}=3 \mathrm{~cm}$, find the length of:

(i) PS
(2 marks)
(ii) PQ
6. Express the number 1470 and 7056 each as product of its prime factors. Hence evaluate.
$\frac{1470^{2}}{\sqrt{7056}}$ leaving the answer in prime factor form.
7. Evaluate without using tables or calculator:-

$$
\log (3 x+8)-3 \log 2=\log (x-4)
$$

8. The interior angle of a regular polygon is three times the exterior angle. Determine the number of sides in the polygon.
9. Using an assumed mean of 342 , calculate the standard deviation of the set of these five numbers: 327, 332, 342, 347 and 352.
10. Solve the equation: $2 \sin ^{2} \mathrm{x}-3 \cos \mathrm{x}=0$ for the values of x in the domain $0^{0} \leq \mathrm{x} \leq 360^{\circ}$.
11. Transformations M and N are represented by the matrices $\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right)$ and $\left[\begin{array}{ll}3 & 0 \\ 1 & 3\end{array}\right)$ respectively.

Point R has co-ordinates (3,-2), find the co-ordinates of R^{1} the image of R under a transformation represented by $\mathrm{MN}(\mathrm{R})$.
12. The equation of a curve is $y=4+3 x-x^{2}$. Find the equation of the normal drawn to the curve at the point $P(3,-5)$. Leave your answer in the form $y=m x+c$.
13. Two similar cans have different heights 8 cm and the other one 10 cm . If the surface area of the larger can is $480 \mathrm{~cm}^{2}$, find the surface area of the smaller can.
14. The radius of a cylinder was found to be 14.0 cm and its height 15.5 cm . Find the percentage error in its volume correct to 4 significant figures. (Take $\pi={ }^{22} / 7$)
15. A bag contains 5 blue balls and 3 red balls. A ball is picked at random and replaced. A second ball is then picked. Find the probability that;-
(a) Both balls are red.
(1 mark)
(b) The two balls are of different colours.
16. A school hall is 14 m longer than its breadth and its area is $1800 \mathrm{~m}^{2}$. What is its breadth? (3 marks)

SECTION II - 50 MARKS
Answer only five questions in the section.
17. Mrs. Mutua earns a basic salary of sh. 19,800 per month and a house allowance of sh. 13,500 per month.

Monthly taxable income in Kshs.	Rate of tax in shs. Per $£$
$0-10,164$	2
$10,165-19,740$	3
$19,741-29,316$	4
$29,317-38,892$	5
Over 38,892	6

Use the monthly tax rates above to calculate:-
(a) (i) The tax payable before relief.
(4 marks)
(ii) The tax payable after relief if she enjoys a personal relief of Kshs. 1, 162 per month. (2 marks)
(b) The following deductions were also made from Mrs. Mutua's salary. A service charge of Kshs. 150, Ksh. 420 for NSSF and 3\% of basic salary as WCPS. Calculate;
(i) Total monthly deductions made from her salary.
(2 marks)
(ii) Her net income per month.
18. A bucket is in the shape of a frustrum with base radius 10 cm and top radius 14 cm . The slant height of the bucket is 20 cm as shown below. The bucket is full of water.
(a) Calculate the volume of the water to 2 dp (Take $\pi=3.142$)

(b) All the water is poured into a cylindrical container of circular radius 12 cm . If the cylinder has height 40 cm , calculate the surface area of the cylinder which is not in contact with water to 2 dp .

19 A school uniform supplier is asked to supply two sizes of shirts: Medium and large. The total number of shirts must not be more than 500. The number of medium shirts must not be less than the number of large shirts. Moreover the number of medium shirts must not be more than 300 and the number of large shirts must be atleast 150 .

If x represents the number of medium shirts and y the number of large shirts;-
(a) Write down, in terms of x and y , all the linear inequalities representing the above information.
(4 marks)
(b) On the grid provided, draw the inequalities and shade the unwanted regions.
(c) The profits were as follows:

Medium shirt : shs. 150
Large shirt :
shs. 200
Use the graph to determine the number of shirts of each size that should be supplied for maximum profit.
20. The figure below is a right pyramid with a rectangular base $A B C D$ of length 12 cm and width 9 cm . The slanting edge is 19.5 cm long.

(a) Determine the height of the pyramid.
(c) Calculate the angle between planes VAD and VBC.
(d) Calculate the volume of the pyramid.
21. The velocity of a body traveling in a straight line is given by $V=10+5 t-2 t^{2}$, where V is in m / s and t is in seconds. Calculate:-
(a) the velocity of the body after 2 seconds.
(2 marks)
(b) the acceleration of the body after 2 seconds.
(1 mark)
(c) the distance covered by the body between the $2^{\text {nd }}$ and the $4^{\text {th }}$ second.
(d) the time when the body will be momentarily at rest.
22. Given that $\mathrm{y}=2 \sin \left(2 \mathrm{x}+30^{0}\right)-3 \cos 2 \mathrm{x}$
(a) Complete the table below for the missing values of y correct to 1 decimal place.

X^{0}	-75	-60	-45	-30	-15	0	15	30	45	60	75	90	105	120
$\mathrm{Y}=2 \sin (2 \mathrm{x}+$ $\left.30^{0}\right)-3 \cos 2 \mathrm{x}$	0.9	-0.5		-2.5		-2		0.5		2.5	2.6			-0.5

(b) On the grid provide below, draw the graph of $y=2 \sin \left(2 x+30^{\circ}\right)-3 \cos 2 x$.

Use the scale 1 cm for 15^{0} on the x -axis
1 cm for 1 unit on the y-axis
(c) Use your graph to solve the equation :
$2 \sin \left(2 x+30^{\circ}\right)=3 \cos x-1$
(d) Find the amplitude and period of the graph in (b) above.
23. A rural factory manufactures broilers food made from sunflower seed, millet and maize in the ratio $5: 3: 1$. Sunflower seeds are imported in to the country from Philippines at a cost of $\$ 204.50$ for 30 kg or from Germany at $£ 96.4$ for 20 kgs . The exchange rate is 1 us $\$=£ 0.718$. Bags are filled with the food at the rate of 420 grammes per second.
(a) How much is the quantity of sunflower seed in 15 kg of the food?
(b) Determine the cheapest source of this sunflower seed, clearly stating the difference in cost in terms of US\$.
(c) Determine the number of bags of the food packed in 4 hours given a bag is 15 kg .
(d) A trader buys the food from the factory and sells each bag at Ksh. 1377, thereby making a profit of 12.5%. Determine his buying price.
24. (a) Sketch the graph of $y=6 x-x^{2}$.
(b) Using 4 trapezia, determine the area bounded by the curve $y=6 x-x^{2}$ and the lines $\mathrm{x}=0$ and $\mathrm{x}=6$
(c) Calculate the exact area of the region in (b) above.
(d) Find the percentage error in calculating the area using trapezium method.

121/2
MATHEMATICS ALT A
PAPER 2
OCT / NOV 2013

KIBWEZI DISTRICT FORM 4 INTER-SCHOOLS EXAMINATION

Kenya Certificate of Secondary Education (K.C.S.E)
MATHEMATICS ALT A

PAPER 2

MARKING SCHEME

1. $\operatorname{det} \Rightarrow \quad-4-4=-8$	B1 M1 A1	$\sqrt{\text { inv }}$
	03	
2. $\begin{aligned} & x^{2}+y^{2}-4 x+6 y-3=0 \\ & x^{2}-4 x+y^{2}+6 y=3 \\ & x^{2}-4 x+(-2)^{2}+y^{2}+6 y+(3)^{2}=3+4+9 \\ & (x-2)^{2}+(y+3)^{2}=16 \\ & (x-2)^{2}+(y+3)^{2}=4^{2} \\ & \text { Centre }(2,-3) \\ & \text { Radius }=4 \text { units } \\ & \hline \end{aligned}$	M1 M1 A1	both radius and centre
	03	
3. Let the angle with the pole be x $\begin{aligned} & 3 \mathrm{x}+\mathrm{x}=90 \\ & \therefore \mathrm{x}={ }^{90} / 4_{4}=22.5^{0} \\ & \text { Wire } \longrightarrow \frac{6}{\operatorname{Sin} 22.5}=15.68 \mathrm{~m} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	B1
	03	

		M1 A1 M1 A1	
		04	
	(i) $\begin{aligned} & \mathrm{PR} \times \mathrm{PN}=\mathrm{PM} \times \mathrm{PS} \\ & 2 \times 12=3 \times \mathrm{PS} \\ & \rightarrow \mathrm{PS}=8 \mathrm{~cm} \end{aligned}$ (ii) $\begin{aligned} & \mathrm{PQ}^{2}=2 \times 12=24 \\ & \rightarrow \mathrm{PQ}=\sqrt{24}=4.899 \mathrm{~cm} \end{aligned}$	M1 A1 B1	
		03	
	$\left.\begin{array}{rl} 1470= & 2 \times 3 \times 5 \times 7 \times 7 \\ 2 \times 3 \times 5 \times 7^{2} \\ 7056= & 2^{4} \times 3^{2} \times 7^{2} \end{array}\right\}, \begin{aligned} \frac{1470^{2}}{\sqrt{705} 6} & =\frac{2^{2} \times 3^{2} \times 5^{2} \times 7^{4}}{2^{2} \times 3 \times 7} \\ & =3 \times 5^{2} \times 7^{3} \end{aligned}$	B1 M1 A1	
		03	
7.	$\begin{aligned} & \log \left[\frac{3 x+8}{8}\right]=\log (x-4) \\ & \frac{3 x+8}{8}=x-4 \end{aligned}$ $\begin{aligned} & 5 x=40 \\ & x=8 \end{aligned}$	M1 M1 A1	$\sqrt{ }$ single logs $\sqrt{ }$ linear eqn
		03	
8.	$3 \mathrm{x}+\mathrm{x}=180^{\circ}$	M1	
	$\mathrm{x}=\frac{180^{0}}{4}=45^{0}$	M1	
	$\mathrm{n}=\frac{360^{\circ}}{45^{0}}=8$ sides	A1	
		03	

22. (a)

X^{0}	-75	-60	-45	-30	-15	0	15	30	45	60	75	90		105	120
$\mathrm{Y}=2 \sin (2 \mathrm{x}+$ $\left.30^{\circ}\right)-3 \cos 2 \mathrm{x}$			-1.7		-2.6		-0.9		1.7			2		0.9	

B3 all $\sqrt{ }$

(c) $2 \sin \left(2 \mathrm{x}+30^{\circ}\right)=3 \cos 2 \mathrm{x}-1$

$$
x=-54^{0} \text { or } 12^{0}\left(\pm 1^{0}\right)
$$

(d) \quad Amplitude $=2.7 \quad(\pm 0.1)$

Period $=180^{\circ}$

	B1B1
B1	
B1	
10	

