DEDAN KIMATHI UNIVERSITY OF TECHNOLOGY
UNIVERSITY EXAMINATIONS 2014/2015
FIRST YEAR SUPPLEMENTARY/ SPECIAL EXAMINATION FOR THE DEGREE IN BACHELOR OF SCIENCE IN MECHANICAL ENGINEERING, MECHATRONIC ENGINEERING, CIVIL ENGINEERING, ELECTRICAL \& ELECTRONIC ENGINEERING AND INDUSTRIAL CHEMISTRY

SMA 2172 CALCULUS I
DATE: $\mathbf{2 9}{ }^{\text {TH }}$ SEPTEMBER 2015
TIME : 8.30AM - 10.30AM

INSTRUCTIONS :Answer question ONE and any other TWO questions

Question 1. (30 marks)
(a) (i) State the $\varepsilon-\delta$ definition of the limit of a function $f(x)$ as x tends to the point $x=x_{0}$. Use this to prove that
$\lim 2 x-1=3$
$x \rightarrow 2$
(ii) Given
$f(x)= \begin{cases}4 & i f x \prec 2 \\ 1 & i f x=2 \\ (x-4)^{2} & i f x \succ 2\end{cases}$
Evaluate

$$
\begin{aligned}
& \lim _{x \rightarrow 2^{-}} f(x) \text { and } \quad \begin{array}{l}
\lim f(x \\
x \rightarrow 2^{+}
\end{array} ~
\end{aligned}
$$

Why is the function not continuous at $x=2$?
(b) State a suitable definition for the derivative of a function $f(x)$ and use it to find the derivative of $\sin 2 x$.
(c) Calculate the gradient to the curve $x^{2}-2 y^{2}=4$ at the point $(6,4)$
(d) Evaluate $\int \cos ^{2} x d x$.
(e) Find the area between the curve $y=3 x-x^{2}$ and the x-axis between the ordinates $x=0$ and $x=5$.
(f) By differentiating implicitly,find $\frac{d y}{d x}$ given that $x^{3} y+3 x y-5=1$
(g) Differentiate the function $y=\frac{1}{2 x+1}$, with respect to x, from first principles.

Question two.(20 marks)

(a) Briefly explain the following
(i) The limit of a function $f(x)$
(ii) A continuous function

Hence determine whether the function $f(x)=\frac{x^{3}-1}{x^{2}-1}$ is continuous at $x=1$. (3 marks)
(b) Find the derivative of the following function from first principles

$$
2 \sqrt{x}+\frac{1}{2 \sqrt{2}}
$$

(4 marks)
(c) Evaluate the following

$$
\begin{aligned}
& \text { (i) } \lim ^{\frac{9}{(x-3)^{2}}} \\
& x \rightarrow 3^{-} \\
& \text {(ii) } \lim _{t \rightarrow \infty} \sqrt[3]{t}+12 t-2 t^{2} \\
& t \rightarrow \infty
\end{aligned}
$$

(d)Differentiate the following functions
(i) $f(x)=\ln \left(3 x^{2}+x\right)$
(ii) $f(x)=7^{x}$

Question three:(20 marks

(a)Given that $f(x)=u(x) v(x)$ where u and v are functions of x, prove that

$$
\begin{equation*}
\frac{d f}{d x}=v(x) \frac{d u}{d x}+u(x) \frac{d v}{d x} \tag{7marks}
\end{equation*}
$$

(b)Find the equation of the tangent to the curve $x^{3}+x y^{3}=9$, and the tangent starts at the point (1,2).
(c)Obtain a reasonable approximate value of $(2.98)^{3}$
(d)Given $f(u)=u^{3}-3 u^{2}+5 u-4=y$, and $u(x)=x^{2}+x$. What is $\frac{d y}{d x}$?

Question four:(20 marks)

(a)Calculate $y^{\prime}, y^{\prime \prime} y^{\prime \prime \prime} y^{i v} y^{v}$ where $y=8 x^{3}-6 x+5$
(b)A particle moves along a long straight line in such a manner that its distance $s,(m)$

From a fixed point on the line at the end of $t-\sec o n d s$ is given by
$s=t^{3}-3 t^{2}-24 t$
(i)Find its velocity when its acceleration is zero.
(ii)Find its acceleration when its velocity is zero.
(c)Sketch the following $y=\frac{1}{3} x^{3}+\frac{1}{2} x^{2}-6 x+8$.
(d)Find $y^{\prime \prime}(x)$; where $x^{\frac{1}{2}}+y^{\frac{1}{2}}=1$.

Question five:(20 marks)

(a)Find the length of the curve given by the following parametric representation,
$x=\frac{1}{3} t^{3}$ and $y=t^{2}$.
(b)Find the curved surface of the solid generated by revolving the part of $y=x^{2}$ from $(0,0)$ to $(\sqrt{6}, 6)$ about the y-axis
(c) Find $\int\left(x^{3}-4 x^{2}+10\right) d x$
(d)Prove that if
$u=x^{3} \tan ^{-1} \frac{y}{x}$ then
$x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=3 u$
and deduce that

$$
\begin{equation*}
x^{2} \frac{\partial^{2} u}{\partial x^{2}}+2 x y \frac{\partial^{2} u}{\partial x \partial y}+y^{2} \frac{\partial^{2} u}{\partial y^{2}}=6 u \tag{9marks}
\end{equation*}
$$

