

SOUTH EASTERN KENYA UNIVERSITY

UNIVERSITY EXAMINATIONS 2014/2015

SECOND YEAR SECOND SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE IN DRYLAND AGRICULTURE

DAS 207: WEATHER AND AGROCLIMATOLOGY
DATE: 13 ${ }^{\text {TH }}$ APRIL 2015 TIME: 2 HOURS

INSTRUCTIONS

Answer ALL Questions in Section A and ONLY THREE Question from Section B
SECTION A: Answer all Questions in this Section 40 Marks

1. Explain the meaning of the following terms 10 Marksa. Agroclimatologyb. Relative humidityc. Emissivityd. Lapse ratee. Vigra
2. a) Differentiate solar radiation from terrestrial radiation 4 Marks
b) Identify two processes by which rainfall is formed. Clearly explain the differences
6 Marks
3. a) Describe how you would measure evapotranspiration of a maize crop 6 Marks
b) Highlight the significance of evapotranspiration in the growth of a crop 4 Marks
4. Describe what happens to sun's energy from the time it reaches the top of theatmosphere to the time it reaches the earth10 Marks
SECTION B: Answer any three (3) Questions in this Section5. With the help of a diagram, describe how radiation, temperature and relative humidity inthe course of a day. Explain the trends in the curves.
5. a) Discuss the importance of the following climatic factors in agricultural production
i) Radiation 3 Marks
ii) Temperature 3 Marks
iii) Relative humidity 3 Marks
b) Describe the relationship between solar radiation and seasonal rainfall in Kenya.
a) Discuss the development of the Asian monsoon in summer and winter
ii) Identify three factors that contribute to the intensity of the Asian monsoon 6 Marks
6. A weatherman made observations as shown in the table below on day 1 and day 2 at 9 am:

Sno	Parameter	Observation day I	Observation day 2
1	Rainfall	14 mm	19 mm
2	Maximum temperature	$31^{\circ} \mathrm{C}$	$33^{\circ} \mathrm{C}$
3	Minimum temperature	$15^{\circ} \mathrm{C}$	$17^{\circ} \mathrm{C}$
4	Dry bulb Temperature	$29^{\circ} \mathrm{C}$	$31^{\circ} \mathrm{C}$
4	Wet bulb temperature	$21^{\circ} \mathrm{C}$	$22^{\circ} \mathrm{C}$
6	Evaporation	15 cups removed from the pan	10 cups added to the pan
6	Wind run (reading of anemometer)	113 km	225 km
7	Wind direction	90°	225°

a. Using the information in the table above, compute:
i. Temperature range for day 1

2 Marks
ii. Wind speed between the two days 2 Marks
iii. Relative humidity for day 1 (relevant table is attached) 3 Marks
b. In which day was the atmosphere drier? Give reason your 3 Marks
c. Given 1 cup $=0.5 \mathrm{~mm}$, calculate evaporation for day 26 Marks
d. Give the wind direction in campus points for both days 4 Marks
8. a) Identify three source regions for airmasses 6 Marks
b) An airmass is designated as mPk
i) Identify the airmass

4 Marks
ii) Briefly discuss its likely origin and characteristics

8 Marks
iii) How would be its temperature to a person on the ground

2 Marks

```
......Relative Humidity Table.......
Dry Bulb
Temperature .......Wet Bulb reads *}\mp@subsup{}{}{\circ}\textrm{C}\mathrm{ lower than Dry
Bulb
* }\mp@subsup{}{}{\circ}\textrm{C
    2 >>>> 84
    4 >>>> 85 70 56 42 29 26 3
    6 >>>>> 86
    8 >>>> 87 75 63 51 39 28 18 7
10 >>>> 88 76 65 54 44 33 23}1014 4
12 >>>> 89
14 >>>> 89
16 >>>> 90
18 >>>> 91 81 73 64 56 5% 48 41 33 26 19
20 >>>> 91 82 74 66 58 51 44 37 30
22 >>>>> 91 83 75 68
```



```
26 >>>> 92 85 77 70 64 57 51 45 39 34 23 14 4
28 >>>> 92 85 78 72 65 59 53 47 42 37 26 17 8
30 >>>> 93 86 79 73 67 61 55 49 44 39
```



```
34 >>>> 93 87 81 75 69 63 58 53 48 43
36 >>>> 93 87 81 75 70 64 59 54 50 45 36 28 21 14
38 >>>> 94 88
40 >>>> 94
42 >>>>
44 >>>> 94 89 82 78 73 68 64 59 55 51 43 56 29 23 18
```

