

SOUTH EASTERN KENYA UNIVERSITY

UNIVERSITY EXAMINATIONS 2016/2017

> FIRST SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR OF EDUCATION (ARTS) ,BACHELOR OF EDUCATION (SCIENCE), BACHELOR OF SCIENCE (ECONOMICS AND STATISTICS) BACHELOR OF ECONOMICS.

SMA 203: LINEAR ALGEBRA 1

INSTRUCTION TO CANDIDATES

Answer Question One and Any Two other Questions

Question 1 (30 Marks)

(a) Define the following terms:
(i) basis of a vector space V
(2marks)
(ii). a vector subspace
(2marks)
(iii). kernel of vector.
(2marks)
(b) Let T be the linear transformation from R_{2} to R_{2} such that $(1,2) T=(1,0)$

$$
(3,-1) T=(2,2) ; \text { compute }(2,4) T
$$

(4marks)
(c). The matrix (with respect to the natural basis) of a rotation of the plane through

$$
\theta \text { radians is } \mathrm{A}=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)
$$

(i). Write down A^{T}
(ii) Compute $A A^{T}$
(d). Determine the dimension of the vector space spanned by the vectors $\vec{u}=(2,-1,3)$,

$$
\begin{equation*}
\vec{v}=(4,0,6) \text { and } \vec{w}=(8,-2,-3) . \tag{5marks}
\end{equation*}
$$

(e). Show whether the vector $\binom{-1}{3}$ is in the column space of the matrix $\left(\begin{array}{ll}2 & 1 \\ 2 & 5\end{array}\right)$.
(3marks)
(f). Let $f: \mathfrak{R}^{4} \rightarrow \mathfrak{R}^{3}$ be multiplication by $\left(\begin{array}{cccc}4 & 1 & -2 & -3 \\ 2 & 1 & 1 & -4 \\ 6 & 0 & -9 & 9\end{array}\right)$. Which of the following vectors are in the null space of $f, \quad \vec{u}=(3,-8,2,0), \vec{v}=(0,0,0,1)$ and $\vec{w}=(0,-4,1,0)$?
(4 marks)
(g). Let T be a mapping from a vector space V into a vector apace W . Explain what is meant by: (i) Range of T
(ii) T is a linear transformation

Question 2 (20 Marks)

(a) .Determine whether the vectors $(1,1,1),(2,2,0)$ and $(3,0,0)$ span \mathfrak{R}^{3}.
(4 marks)
(b) (i). Let V be a vector subspace of \mathfrak{R} of polynomials of degree less than or equal
to 2 . Check whether or not the following vectors in V are linearly independent;

$$
\begin{equation*}
x^{2}+3 x+2,2 x^{2}+x, 2 x^{2}-x-1 . \tag{5marks}
\end{equation*}
$$

(ii) Show that $\vec{w}=(9,2,7)$ is a linear combination of $\vec{u}=(1,2,-1$,$) and \vec{v}=(6,4,2)$.
(4 marks)
(c) Find the kernel, range, rank and nullity for the linear function

$$
\begin{equation*}
f: \mathfrak{R}^{2} \rightarrow \mathfrak{R}^{3} \text { given by } \mathrm{f}(\mathrm{x}, \mathrm{y})=(\mathrm{x}, 2 \mathrm{y}, \mathrm{x}+\mathrm{y}) . \tag{7marks}
\end{equation*}
$$

Question 3 (20 Marks)

(a) Let T be the linear transformation, clockwise direction of the plane through 90° and let S be the linear transformation, a reflection in the y axis. Compute $(x, y)\left(T^{3}-3 T^{2} S^{2}+3 S^{2} T\right)$
(b) Find an ordered basis β for R_{2} such that $(1,0) C_{\beta}=(1,2)$ and $(0,1) C_{\beta}=(3,4) \quad$ ($\mathbf{6 m a r k s}$)
(c) Given that β is the ordered basis $\{(1,2),(0,3)\}$ for R_{2}.

Compute $\left(x_{1}, x_{2}\right) \mathrm{C}_{\beta}$.
(2marks).
(d) Compute $\left[7\left(\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right)\right]\left(\begin{array}{llll}1 & 0 & 6 & 1 \\ 6 & 1 & 4 & 0\end{array}\right)$

Question 4 (20 Marks)

(a) Compute AA^{T} if $\mathrm{A}=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$
(3marks)
(b) If β is the ordered basis for R_{2} find x if $x C_{\beta}=(5,2)$; that is $(5,2) C_{\beta}^{-1}$
c). For the matrix $G=\left(\begin{array}{lll}3 & 9 & 6 \\ 0 & 0 & 0 \\ 2 & 6 & 4\end{array}\right)$, find the rank ,
I. Classify as singular or nonsingular,
II. Describe the row and column spaces geometrically
(d) Given the linear system below, use Gaussian elimination method to solve for w, x, y, z.

$$
\begin{aligned}
& w-x+2 y-z=-8 \\
& 2 w-2 x+3 y-3 z=-20 \\
& w+x+y+0 z=-2 \\
& w-x+4 y+3 z=4
\end{aligned}
$$

(8marks)

Question 5 (20 Marks)

(a). Find a basis and the dimension of the vector space of matrices $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ subject to each of the following conditions: (i). $a, b, c, d \in \mathfrak{R}$
(ii). $a-b+2 c=0 \quad$ and $\quad d \in \mathfrak{R}$
(iii). $a+b+c=0, a+b-c=0 \quad$ and $\quad d \in \mathfrak{R}$
(b). Determine whether T is a linear transformation in the following:

$$
\begin{equation*}
T:(x, y, z) \rightarrow(x+z, y-x, z+y-x), \text { that is } T: \mathfrak{R}^{3} \rightarrow \mathfrak{R}^{3} \tag{6marks}
\end{equation*}
$$

(c). Use Cramer's rule to solve the following system of linear equations.

$$
\begin{aligned}
& 2 x+3 y-z=1 \\
& 3 x+5 y+2 z=8 \\
& x-2 y-3 z=1
\end{aligned}
$$

