

SOUTH EASTERN KENYA UNIVERSITY

UNIVERSITY EXAMINATIONS 2016/2017

FIRST SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR OF EDUCATION (ARTS), BACHELOR OF EDUCATION (SCIENCE), BACHELOR OF SCIENCE (ECONOMICS AND STATISTICS) BACHELOR OF ECONOMICS.

SMA 203: LINEAR ALGEBRA 1

DATE: 7TH DECEMBER, 2016

TIME: 1.30-3.30PM

INSTRUCTION TO CANDIDATES

Answer **<u>Question One</u>** and <u>Any Two</u> other Questions

Question 1 (30 Marks)

(a)	Define the following terms:	
	(i) basis of a vector space V	(2marks)
	(ii). a vector subspace	(2marks)
	(iii). kernel of vector.	(2marks)
(b)	Let T be the linear transformation from R_2 to R_2 such that $(1,2)T = (1, 1)$	0)
	(3,-1)T = (2,2); compute $(2,4)T$	(4marks)
(c).	The matrix (with respect to the natural basis) of a rotation of the plane through θ radians is A= $\begin{pmatrix} cos\theta & sin\theta \\ -sin\theta & cos\theta \end{pmatrix}$	
	(i). Write down A^T	(2marks)
	(ii) Compute AA^T	(3marks)
(J)		

- (d). Determine the dimension of the vector space spanned by the vectors u = (2, -1, 3),
 - $\vec{v} = (4,0,6) \text{ and } \vec{w} = (8,-2,-3).$ (5 marks)

(e). Show whether the vector $\begin{pmatrix} -1 \\ 3 \end{pmatrix}$ is in the column space of the matrix $\begin{pmatrix} 2 & 1 \\ 2 & 5 \end{pmatrix}$. (3marks)

(f). Let
$$f: \mathfrak{R}^4 \to \mathfrak{R}^3$$
 be multiplication by $\begin{pmatrix} 4 & 1 & -2 & -3 \\ 2 & 1 & 1 & -4 \\ 6 & 0 & -9 & 9 \end{pmatrix}$. Which of the following vectors are in the null space of f , $\vec{u} = (3, -8, 2, 0)$, $\vec{v} = (0, 0, 0, 1)$ and $\vec{w} = (0, -4, 1, 0)$?

(4 marks)

(g). Let T be a mapping from a vector space V into a vector apace W. Explain what is meant by: (i) Range of T (1 mark)
(ii) T is a linear transformation (2 mark)

Question 2 (20 Marks)

- (a) .Determine whether the vectors (1,1,1), (2,2,0) and (3,0,0) span \mathfrak{R}^3 . (4 marks)
- (b) (i). Let V be a vector subspace of \mathfrak{R} of polynomials of degree less than or equal

to 2. Check whether or not the following vectors in V are linearly independent;

$$x^{2} + 3x + 2, \ 2x^{2} + x, \ 2x^{2} - x - 1.$$
 (5 marks)

(ii) Show that $\vec{w} = (9, 2, 7)$ is a linear combination of $\vec{u} = (1, 2, -1,)$ and $\vec{v} = (6, 4, 2)$.

(c) Find the kernel, range, rank and nullity for the linear function

$$f : \mathfrak{R}^2 \to \mathfrak{R}^3$$
 given by $f(x, y) = (x, 2y, x+y)$. (7 marks)

Question 3 (20 Marks)

(a) Let T be the linear transformation, clockwise direction of the plane through 90⁰ and let S be the linear transformation, a reflection in the y axis. Compute (x, y) $(T^3 - 3T^2S^2 + 3S^2T)$

(8marks)

(4 marks)

(b) Find an ordered basis
$$\beta$$
 for R_2 such that $(1,0)C_{\beta} = (1,2)$ and $(0,1)C_{\beta} = (3,4)$ (6marks)

(c) Given that β is the ordered basis {(1,2), (0,3)} for R_2 . Compute $(x_1, x_2)C_\beta$. (2marks).

(d) Compute
$$\begin{bmatrix} 7 \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \begin{bmatrix} 1 & 0 & 6 & 1 \\ 6 & 1 & 4 & 0 \end{bmatrix}$$
 (4marks)

Question 4 (20 Marks)

(a) Compute AA^{T} if $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ (3marks)

(b) If β is the ordered basis for R_2 find x if x $C_{\beta} = (5,2)$; that is $(5,2)C_{\beta}^{-1}$ (3marks)

c). For the matrix
$$G = \begin{pmatrix} 3 & 9 & 6 \\ 0 & 0 & 0 \\ 2 & 6 & 4 \end{pmatrix}$$
, find the rank ,

		(211141115)
I.	Classify as singular or nonsingular,	(2marks)
II.	Describe the row and column spaces geometrically	(2marks)

(d) Given the linear system below, use Gaussian elimination method to solve for w, x, y, z

$$w - x + 2y - z = -8$$

$$2w - 2x + 3y - 3z = -20$$

$$w + x + y + 0z = -2$$

$$w - x + 4y + 3z = 4$$

(8marks)

(2marks)

Question 5 (20 Marks)

(a). Find a basis and the dimension of the vector space of matrices $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ subject to

each of the following conditions: (i). $a, b, c, d \in \Re$ (4 marks)

(ii).
$$a - b + 2c = 0$$
 and $d \in \Re$ (3 marks)

(iii).
$$a + b + c = 0$$
, $a + b - c = 0$ and $d \in \Re$ (2 marks)

(b). Determine whether T is a linear transformation in the following:

$$T:(x, y, z) \rightarrow (x + z, y - x, z + y - x), \text{ that is } T: \mathfrak{R}^3 \rightarrow \mathfrak{R}^3$$
 (6 marks)

(c). Use Cramer's rule to solve the following system of linear equations.

2x + 3y - z = 13x + 5y + 2z = 8x - 2y - 3z = 1(5 marks)