SOUTH EASTERN KENYA UNIVERSITY

UNIVERSITY EXAMINATIONS 2016/2017

FIRST SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE AND ARTS, BACHELOR OF SCIENCE MATHEMATICS

SMA 306: COMPLEX ANALYSIS 1

DATE: $7^{\text {TH }}$ DECEMBER, 2016
TIME: 10.30-12.30PM
ANSWER QUESTION ONE AND ANY OTHER TWO

QUESTION ONE (30MARKS)

a. State the necessary and sufficient conditions for $f(z)=u(x, y)+i v(x, y)$ to be analytic in a region \Re.
(4marks)
b. Find the value of
i) $(1+i)^{99}$ (3marks)
ii) $\quad(\sqrt{3}+3 i)^{\frac{1}{2}}$
(3marks)
c. Evaluate the following limit $\lim _{z \rightarrow 0} \frac{x+y-1}{z}$
(4marks)
d. Show that $|\sin z|^{2}=\sin ^{2} x+\sinh { }^{2} y$
(4marks)
e. Express the following equation in terms of conjugate coordinates $2 x-3 y=5 \quad$ (4marks)
f. Express the complex number $3+3 i$ in polar form and draw the vector associated to this number in complex plane.
g. Determine the continuity of the function $\frac{z^{2}+4}{z(z-2 i)}$.

QUESTION TWO (20MARKS)

a. Determine whether the following functions are analytic or not
i) $\quad f(z)=3 z^{2}+7 z$ (4marks)
ii) $\quad f(z)=|z|^{2}$
(3marks)
b. Construct an analytic function whose real part $u(x, y)=x^{3}-3 x y^{2}+3 x^{2}-3 y^{2}+1$
(5marks)
c. Derive the Cauchy Riemann equations in polar form.
d. Evaluate the integral $\frac{1}{2 \pi i} \oint \frac{z^{2}+5}{z-5} d z$

QUESTION THREE (2OMARKS)

a. If $z=x+i y$ and $w=u+i v$, prove that $\exp (z+w)=\exp z \cdot \exp w$
b. Consider the function $f(z)=x^{2}+y+i(2 y-x)$. Determine the value of x that will make the function analytic and find $f^{\prime}(z)$.
c. Find the Laurent series about the indicated singularity for each of the following functions and give the region of convergence of each series
i) $\frac{e^{2 z}}{(z-1)^{3}} ; z=1$
ii) $\quad \frac{z-\sin z}{z^{3}} ; z=0$
(6marks)
(5marks)

QUESTION FOUR (20MARKS)

a. Suppose that $u(x, y)=x^{2}-y^{2}$ and $v(x, y)=2 x y$, show that v is a harmonic conjugate of u in some domain and it is not generally true that u is a harmonic conjugate of v there (7marks).
b. Find the image of unit circle $|z|=1$ under the mapping $w=z^{2}$
(6marks)
c. State the Cauchy's integral formula and hence evaluate $\frac{1}{2 \pi i} \oint_{c} \frac{\cos \pi z}{z^{2}-1}$ where c is a rectangle with vertices $-i,-2-i,-2+i, i$
(7marks)

QUESTION FIVE (20MARKS)

a. Expand $f(z)=\frac{1}{z^{2}-1}$ as a Laurent series about $z=1$
(4marks)
b. State the Cauchy'sresidue theorem and use it to evaluate $I=\frac{1}{2 \pi i} \int_{c} \frac{z+2}{z(z+1)} d z$, wherec is the circle $|z|=2$
(10marks)
c. Given that $w=\frac{1}{z}=\frac{x-i y}{x^{2}+y^{2}} \quad$, test for analyticity of the function and determine if the function is a harmonic or not.

