Mt Kenya

Time: 2Hours

UNIVERSITY EXAMINATION 2009/2010

SCHOOL OF APPLIED AND SOCIAL SCIENCES

DEPARTMENT OF INFORMATION TECHNOLOGY

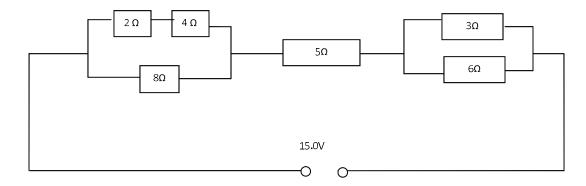
EXAMINATION FOR BACHELOR OF BUSINESS INFORMATION TECHNOLOGY

BBIT 1102: BASIC ELECTRICITY & OPTICS

Instructions

Answer question **ONE** and any other **TWO** questions

Question One

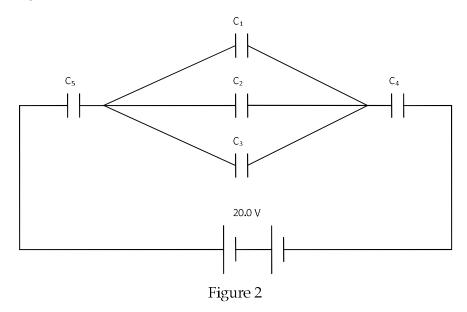

(a)	(i) State Ohm's law		(2mks)
	(ii) Define Capacitance		(2mks)
(b)	(i) Differentiate between Hard and Soft X-rays		(3mks)
	(ii) State the conditions necessary for total internal reflection.		(2mks)
(c)	(i) Differentiate between the following		
	I.	Conductors	
	II.	Semi-conductors	
	III.	Insulators	(3mks)
	(ii) Differentiate between thin and thick lenses		(2mks)
(d)	State the factors on which resistance of a conductor depends.		(4mks)
(e)	(i) State the factors	which affect capacitance of a capacitor.	(3mks)
	(ii) State FOUR pro	perties of electromagnetic waves	(4mks)
(f)	The frequency of an X-ray radiation used in killing deep cancer growth is 10^{12} Hz.		
	Calculate the wavelength of this radiation.		(3mks)

Question Two

- a) i) Define laser (2mks)
 - ii) Outline four (4) types of lasers (4mks)
 - iii) Outline four application areas of lasers (4mks)
- b) i) Differentiate between intrinsic and extrinsic semiconductor (2mks)
 - ii) With the aid of a diagram explain the working principles of a transistor (4mks)
 - iii) With the aid of a diagram explain how diodes are used to as a rectifier of a.c current and smoothing out the output (4mks)

Question Three

- (a) Define the term resistance as used in electricity. (2mks)
- (b) Calculate the current flowing through a circuit supplied by a 12v battery and connected to a 4 Ω resistor. (4mks)
- (c) Show from first principles that the combined resistance R_T for two resistors R_1 and R_2 combined in parallel is given as $R_T = \frac{R_1 R_2}{R_1 + R_2}$ (4mks)
- (d) Resistors are connected in a circuit diagram as shown in Fig 1 below.



Calculate

- (i) Total resistance in the circuit
- (ii) Total current in the circuit
- (iii) Current in the 3Ω resistor
- (iv) Current through 8Ω resistor (10mks)

Question Four

- i) With the aid of a diagram outline the working principle of fibre optics (4mks)
 - ii) With the aid of a diagram show that the lens equation is given by
 - where Z is the focal length, V the image distance and U the object distance. (8mks)
- b) The figure 2 below shows a combination of capacitors. If C_1 = C_2 = C_3 = C_4 = C_5 = $30\mu f$. Find
 - i. Equivalent capacitance
 - ii. Voltage drop across C_5
 - iii. Energy possessed by C₃
 - iv. Charge on C₂

(8mks)

Question Five

- a) i) State Faraday's law
 - ii) State Lenz's law
 - iii) Outline mutual inductance

(4mks)

- b) Outline three (3) ways ion which energy is lost in transformers (6mks)
- c) A transformer is to be used to provide power to a 12V lamp from an a.c mains supply of 315v. Current through the lamp is 5A and efficiency of the transformer is 80%. Find
 - i. Find the number of turns of the secondary coil in the primary coil has 1000 turns.
 - ii. Power supplied to the transformer
 - iii. Current in the primary coil

(10mks)