MT KENYA

UNIVERSITY

University Examination

THIRD TRIMESTER 2008/2009

BACHELOR OF BUSINESS INFORMATION TECHNOLOGY

BBIT 1102: Basic Physics for BBIT

2 HOURS

SECTION A: Answer ALL questions from this section [30mks]

Question One

a. Name the three states of matter

(3mks)

- b. Sketch a displacement-distance graph for a transverse wave, showing two complete cycles. Mark on your graph distances to show what is meant by wavelength and amplitude (3mks)
- c. An object is placed 25 cm from a concave mirror of focal length of 20cm the mirror. Find the distance of the image from the mirror. (3mks)
- d. List three factors affecting the resistance of a conductor

(3mks)

e. i. State Ohm's Law

(1mk)

- ii. Two resistors of 3Ω and 6Ω are connected in parallel across a p.d. of 6V. Find the total current in the circuit. (3mks)
- f. i. Draw the symbol of a p-n junction diode and indicate the direction of conventional current flow. (2mk)
 - ii. What does "biasing" a diode mean? Using well labeled diagrams, differentiate between forward bias and reverse bias. (2mks)
- g. What is a capacitor?

(1mk)

h. Given that C_1 and C_2 are $2\mu F$ and $3\mu F$ respectively, calculate the combined capacitance in the arrangement below. (3mks)

- i. Define a dielectric (1mk)
- j. Given that C_1 and C_2 are $5\mu F$ and $7\mu F$ respectively, calculate the combined capacitance in the arrangement below. (2mks)

k. Calculate the current in the following circuit

(3mks)

SECTION B: Answer TWO questions from this section [40mks]

Question 2

- a. Arrange the following in their order of increasing wavelength; blue light, ultraviolet rays, radio waves, gamma rays, infrared rays. (2mks)
- b. i) Define the refractive index of a material (2mks)
 - ii) Define the critical angle for a material (2mks)
- c. Determine the refractive index of a material if light travels through this material at a speed of 1.5x108ms-1 (4mks)
- d. i. Name four properties of light (4mks)
 - ii. Find the angle of refraction when
 - I. a ray of light travels from air to glass at an angle of incidence of 40° (3mks)
 - II. a ray of light is traveling from glass to air at an angle of 20° (3mks) (Take ${}_{a}n_{g}$ =1.5)

Question 4

a.	Use well labeled diagrams to explain how rays of light behave as they move from one	
	side of lens to the other.	(4mks)
b.	State the laws of electromagnetic induction	(2mks)
	Describe conditions for Total internal reflection (T.I.R.) Explain how an optic fibre works	(2mks) (2mks)
e.	i. Differentiate between a step-up transformer and a step-down transformer	(4mk)
	ii. Name and describe any two sources of power loss in transformers and how they can	

(6mks)

Question 5

be minimized

- a. Name and explain the two ways in which current is induced in a coil (6mks)
- b. Explain what happens when the forward voltage across a p-n junction is gradually increased from zero (2mks)
- c. Describe the mechanisms responsible for junction break down under increasing reverse voltage. (6mks)
- d. Explain why silicon n-p-n transistors are preferred over other types of transistors. (4mks)
- e. Name two applications of transistors (2mks)