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INSTRUCTIONS:  Answer question one and any other two questions   

 

QUESTION ONE – (30 MARKS) 

(a) Evaluate the following limits 
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       (4 Marks) 

 

(b) Find the relationship between 𝑎 and 𝑏 so that the function 𝑓 defined by  

𝑓 𝑥  
𝑎𝑥 + 1, 𝑖𝑓 𝑥 ≤ 3
𝑏𝑥 + 3, 𝑖𝑓 𝑥 > 3

  is continuous at 𝑥 = 3     (4 Marks) 

(c) Use the definition of derivative to obtain the derivative of the function 

𝑓 𝑡 =  
2

𝑡
          (3 Marks) 
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(d) Find the derivatives of the following  functions 

(i) 𝑧 =  
2𝑡+5

𝑡2+1
 

4

          (3 Marks) 

(ii) 𝑦 =  𝑥2 + 1 sin 𝑥         (3 Marks) 

 

(iii) 𝑦 = 𝑥 sin−1(𝑥2)       (3 Marks) 

 

(e) Use derivatives to estimate the value of  65
3

     (3 Marks) 

 

(f) A spherical balloon is blown up so that its volume increases at a constant rate of 2𝑐𝑚3 

per second.  Find the rate of increase of its radius when its volume is 50𝑐𝑚3.    

          (3 Marks) 

 

QUESTION TWO – (20 MARKS) 

(a) Find 
𝑑𝑦

𝑑𝑥
 for 𝑦 = tan−1  𝑥 + 1      (3 Marks) 

 

(b) A closed cylindrical metal tin is to have a capacity of 250 𝜋 𝑚𝑙.  If the area of the metal 

used is to be a minimum, what should the radius of the tin be.  (4 Marks) 

 

(c) Given that 𝑥 = 𝜃 − sin 𝜃, 𝑦 = 1− cos 𝜃, find 
𝑑2𝑦

𝑑𝑥2      (4 Marks) 

 

(d) Find the equation of the tangent to the curve 𝑦3 − 𝑥𝑦2 + cos 𝑥𝑦 = 2 at the point  0,1 . 

          (4 Marks) 

 

(e) From first principle find 
𝑑𝑦

𝑑𝑥
 given 𝑦 =

3−4𝑥

1−2𝑥
       (5 Marks) 

 

QUESTION THREE – (20 MARKS) 

(a) Find 
𝑑𝑦

𝑑𝑥
 if 𝑦 = ln   

𝑥−1

𝑥2
 , 𝑥 > 1           (3 Marks) 

 

(b) Sketch the curve of the function 𝑦 = 5𝑥4 − 𝑥5      (6 Marks) 

 

(c) Find all points of discontinuity of f, where f is defined by:   (7 Marks) 

 

𝑓 𝑥 =  
2𝑥 + 3, 𝑖𝑓 𝑥 ≤ 2
2𝑥 − 3, 𝑖𝑓 𝑥 > 2
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(d) Find 
𝑑𝑦

𝑑𝑥
 at  1,1  given 𝑥2 ln 𝑥𝑦2 = 10 𝑥 − 𝑦3 .    (4 Marks) 

QUESTION FOUR – (20 MARKS) 

(a) If 𝑦 =
cos 𝑥

𝑥
,  prove that 

𝑑2𝑦

𝑑𝑥2
+

2

𝑥
  
𝑑𝑦

𝑑𝑥
+ 𝑦 = 0       (5 Marks) 

 

(b) Show that function 𝑓 𝑥 =  𝑥  is differentiable everywhere except at 𝑥 = 0.  Illustrate 

the conclusion of derivative .       (5 Marks) 

 

(c) Find the derivative of 𝑓 𝑥 = sec 𝑥 using the definition of derivative. (4 Marks) 

 

(d) A closed rectangular container has a square base and is required to have a volume of 

64𝑐𝑚3.  If the container is made of thin metal, find the dimensions which will minimize 

the surface area.        (6 Marks) 

     


