

University Examinations 2010/2011

SECOND YEAR, FIRST SEMESTER EXAMINATIONS FOR THE DEGREE OF BACHELOR OF COMMERCE

HBC 2122: OPERATIONS RESEARCH

DATE: APRIL 2011

TIME: 2 HOURS

INSTRUCTIONS: Answer question one and any other two questions

QUESTION ONE – (30 MARKS)

(a) Define linear progra	amming and state three areas where linear progr	camming has been used
successfully to solve	e practical problems in business.	(5 Marks)
(b) (i) Explain the conc	(3 Marks)	
(ii) Consider LPP		
Maximize z	=3x+9y	
Subject to		
x + x	$4y \le 8$	
x + 2	$2y \le 4$	
х, у	$v \ge 0$	
Set up the starting s	implex tableau and show that the starting basic	solution is degenerate.
		(6 Marks)
(c) (i) State the fundam	ental theorem of duality	(2 Marks)
(ii) Given the prima	l problem	
Maximize	$6x_1 + 5x_2 - 3x_3 + 4x_4$ subject to;	
	$x_2 + x_3 + x_4 \le 8$	
	$x_1 + x_2 + 2x_3 + 3x_4 \le 15$	
	$x_1 + 2x_2 \le 10$	
	$2x_1 + 3x_2 + 2x_3 - 4x_4 \le 24$	
	$-2x_1 - 3x_2 - 2x_2 + 4x_4 < -24$	

$$x_1, x_2, x_3, x_4 \ge 0$$

Write down its dual problem

(6 Marks)

Explain the following terms as used in network analysis.	
(i) A path	(2 Marks)
(ii) A loop	(2 Marks)
(iii)Connected net work	(2 Marks)
(iv)A tree	(2 Marks)

QUESTIN TWO - (20 MARKS)

(d)

(a) What is game theory	(2 Marks)
(b) Explain the following terms as used in game theory	
(i) Pure strategy	(2 Marks)
(ii) Mixed strategy	(2 Marks)
(iii)Optimal strategy	(2 Marks)
(iv)Value of the game	(2 Marks)
(c) Describe five limitations of games in competition.	(10 Marks)

QUESTION THREE = (20 MARKS)

(a)	(i) State the characteristics of a linear program in canonical form	(3 Marks)
	(ii) Convert the linear program below to canonical form.	(4 Marks)

Minimize z = 3x + 4ySubject to $x + 2y \ge 12$ $2x - 3y \le 18$ $x, y \ge 0$

(b) Machine time available on two machines A and B is to be allocated to production of some quantity of two products 1 and 2. The two machines A and B have 80hrs and 60hrs of time available on them respectively. the two products 1 and 2 require for their production different amounts of time on each of the machines as shown in the table below.

Product	Time on machine A	Time on machine B
1	2 hrs	3 hrs
2	4 hrs	2 hrs
	80 hrs	60 hrs

Each unit of product 1 is sold at Ksh60 and each unit of product 2 is sold at Ksh.50. Formulate a linear programming model that will maximize the production and apply graphic method to solve the problem. (13 Marks)

QUESTION FOUR - (20 MARKS)

(a) Convert the following linear programs to standard form.

(i) Minimize Subject to	z = 3x + 4y	
	$3x + y \le 34$	
	$-x + 2y \ge 12$	
	$x, y \ge 0$	(3 Marks)
(ii) Maximize	$z = 4x_1 + 3x_2$	
Subject to	$x_1 + x_2 \le 40$	
	$2x_1 + x_2 \le 60$	
	$x_1, x_2 \ge 0$	(3 Marks)

(b) A firm manufactures two types of bearings, A and B each of which requires processing time on lathes, grinders and polishers. The machine times needed for each type of bearing are given in the table

Bearin	g	Time required in (hours)		
type				
	Lathe	Grinder	polisher	
А	2	8	5	
В	5	5	2	

The total machine time available is 250 hours on lathes, 310 hours on grinders and 160 hours on polishers. The net profit per bearing of type A is £9 and of type B is £10. Apply the simplex Algorithm to determine the number of each type to be produced to maximize profit and state the maximum profit. (14 Marks)

QUESTION FIVE - (20 MARKS)

A distribution system has the following constraints

FACTORY	CAPACITY (UNITS)
А	45
В	15
С	40
WAREHOUSE	DEMAND (UNITS)
А	25
В	55

The transportation costs per unit (in Ksh) allocated with each route are as follows:

_		
	~	٦.
		-

	А	В	С
А	10	7	8
В	15	12	9
С	7	8	12

Find the minimum cost of transportation using:

(i) The north west corner method	(6 Marks)
(ii) The least cost method	(7 Marks)
(iii)The Vogel's approximation method	(7 Marks