

UNIVERSITY EXAMINATION 2010/2011

SCHOOL OF PURE AND APPLIED SCIENCES

DEPARTMENT OF INFORMATION TECHNOLOGY

EXAMINATION FOR BACHELOR OF BUSINESS INFORMATION TECHNOLOGY

UNIT CODE: BBIT 1201 TITLE: DISCRETE MATHEMATICS

DATE: NOVEMBER, 2010 TIME: 2 HOURS

INSTRUCTIONS: Answer Question **ONE** and any other **TWO** questions.

QUESTION ONE

a) Write the converse, inverse and the contra positive of the following sentence."If the Sun shines brightly today, then it will set early"

(4mks)

b) Define the terms: Tautology, Logical equivalence and a propositional function.

(3mks)

c) State three methods of proving theorems

(3Mks)

d) Explain the meaning of the term lattice

(2mks)

e) How many ways are there to select 5 players from a 10-member tennis team to make a trip to a match at another school?

(3mks)

- f) Differentiate between the cardinality of a set and the Cartesian product of sets(4mks)
- g) What is a partially ordered set

(2mks)

h) Simplify the following Boolean expressions

(5mks)

$$a.(1+0)+(1.0)$$

$$b.(\overline{1+1})+(\overline{0})+1.1$$

i) Draw the venn diagram showing the intersection between two sets A and B.

QUESTION TWO

Use a relevant method of proving theorems to:

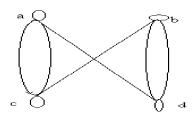
a) Prove that the following formula for the sum of a finite number of terms of a geometric progression is given by,

$$\sum_{j=0}^{n} ar^{j} = a + ar + ar^{2} + \dots \dots \dots \dots \dots ar^{n} = \frac{ar^{n+1} - a}{r-1}$$

(7mks)

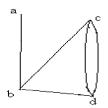
b) Prove that $\sqrt{2}$ is irrational.

(7mks)


c) Prove the theorem "the integer n is odd if and only if n^2 is odd

(6mks)

QUESTION THREE


a) Represent each of the following graphs using an adjacency matrix

i)

(4mks)

ii)

(4mks)

(6mks)

b) Draw the graphs with the following adjacency matrices

i)
$$\begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 \end{bmatrix}$$

ii)
$$\begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \end{bmatrix}$$
 (6mks)

QUESTION FOUR

- a) What is the Cartesian product AXBXC where $A = \{0,1\}, B = \{1,2\}$ and $C = \{a,b,c\}$ (6mks)
- b) Find the power set of the set and {0,1,2} (4mks)
- c) Let A, B and C are sets. Show that $A \cup (B \cap C = (\bar{C} \cup \bar{B}) \cap \bar{A}$ using identities (4mks)
- d) Suppose that f is defined recursively by;

$$f(0)=3$$

 $f(n+1)=2f(n)+3$.
Find $f(1)$, $f(2)$, $f(3)$ and $f(4)$
(4mks)

e) What is a Venn diagram? (2mks)

QUESTION FIVE

- a) Show that the propositions $\neg p \mathbb{V} q$ and $p \to q$ are logically equivalent (6mks)
- b) Let R(x,y,z) denote the statement $z=x^2+y^2$. Find the truth values of R(0,0,1),R(1,1,2) and R(2,3,13).

(6mks)

- c) Draw the truth tables for negation and the implication of a proposition p and q (4mks)
- d) Explain the meaning of the following terms.
 - i) Open sentence
 - ii) Logical Reasoning (4mks)