

MERU UNIVERSITY OF SCIENCE AND TECHNOLOGY

P.O. Box 972-60200 – Meru-Kenya. Tel: 020-2069349, 061-2309217. 064-30320 Cell phone: +254 712524293, +254 789151411 Fax: 064-30321 Website: www.must.ac.ke Email: info@must.ac.ke

University Examinations 2013/2014

SECOND YEAR, FIRST SEMESTER EXAMINATIONS FOR DEGREE OF BACHELOR OF SCIENCE IN COMPUTER SCIENCE

AND

FIRST YEAR, SECOND SEMESTER EXAMINATIONS FOR DEGREE OF BACHELOR OF SCIENCE IN MATHEMATICS AND COMPUTER SCIENCE AND BACHELOR OF SCIENCE IN INFORMATION TECHNOLOGY

ICS 2200: ELECTRONICS

DATE: APRIL 2014

TIME: 2 HOURS

INSTRUCTIONS: Answer question one and any other two questions.

QUESTION ONE – (30 MARKS)

(a) P-type and n-type semiconductors are made from a pure semiconductor by a process called 'doping'

	(i)	What is meant by doping?	(1 Mark)
	(ii)	Explain how doping produces n-type semiconductor.	(4 Marks)
(b)	State ty	vo principle uses of light-emitting diode (LED)	(2 Marks)
(c)	Define	the following terms related to transistor currents.	
	(i)	Alpha factor	(1 Mark)
	(ii)	Beta factor	(1 Mark)
(d)	a) A transistor has a collector current of 10mA and base current of 40mA. What is the		
	current	gain of the transistor.	(2 Marks)
(e)	State ty	vo major drawbacks of Bipolar Junction Transistor (BJT).	(2 Marks)
(f)	(f) A transistor has a collector current of 2mA. If the current gain is 135, what is the		
	current	?	(2 Marks)
(g)	Give a	ny three differences between Bipolar Junction Transistors (BJT) a	nd Junction Field
	Effect '	Transistors (JFET).	(6 Marks)

(h) Consider the figure below showing the transfer characteristic of a JFET. Write the equation for drain current.(3 Marks)

(i) Briefly, explain the meaning of the following terms used in JFET circuit analysis.
(i) Shorted-gate drain current (I_{DSS}). (2 Marks)
(ii) Pinch off voltage (V_P) (2 Marks)
(j) What is a sinusoidal oscillator? (2 Marks)

QUESTION TWO - (20 MARKS)

(a) Explain how a Zener diode acts as a voltage regulator.	(12 Marks)
(b) The base current in a transistor is 0.01mA and the emitter current is 1mA.	Calculate the
values of \propto and β , where \propto and β have their usual meanings.	(8 Marks)

QUESTION THREE – (20 MARKS)

(a) Using a clearly well labelled sketch diagram, explain the working principle of an n-type Junction Field Effect Transistor (JFET).(7 Marks)

(b) Consider the diagram below showing the JFET amplification circuit.

Briefly explain how amplification is achieved.(6 Marks)(c) Sketch the current voltage graph showing the output characteristics of a JFET.
(3 Marks)(3 Marks)(d) A JFET has a drain current of 5mA. If $I_{DSS} = 6mA$ and $V_{GS \ (off)} = -6V$, Calculate the values of
(i) V_{GS} (3 Marks)
(ii) V_P

QUESTION FOUR - (20 MARKS)

(a) Consider a sketch diagram for an n-channel MOSFET.

Explain the depletion mode of operation				
(b) Using a clearly well labelled sketch diagram, explain the working principle of a Thyristor				
under the following conditions:				
(i) When the gate is open	(6 Marks))		
(ii) When the gate is positive with res	spect to cathode. (5 Marks))		
(c) A hay-wave rectified circuit employing an SCR is adjusted to have a gate current of				
1mA. The forward breakdown voltage of SCR is 100V for $I_G = 1mA$. If a sinusoidal				
voltage of 200V peak is applied, find:				
(i) Firing angle	(1 Mark)			
(ii) Conduction angle	(1 Mark)			
(iii) Average current	(2 Marks))		
Assume load resistance = 100Ω a	and holding current is zero.			