

University Examinations 2011/2012

FIRST YEAR, SECOND SEMESTER EXAMINATIONS FOR THE DEGREE OF BACHELOR OF SCIENCE IN MATHEMATICS AND COMPUTER SCIENCE

SMA 2201: LINEAR ALGEBRA 1

DATE: APRIL 2012

TIME: 2 HOURS

INSTRUCTIONS: Answer question **one** and any other **two** questions

QUESTION ONE (30 MARKS)

a) Determine k so that the vectors $\frac{u}{2} = (2,3k, -4,1,5)$ and $\frac{v}{2} = (6, -1,3,7,2k)$ are orthogonal. (2 Marks)

b) Determine whether or not the vectors $\overset{u}{\sim} = (6,2,3,4), \overset{v}{\sim} = (0,5,-3,1)$ and $\overset{W}{=} (0,0,7,-2)$ are independent. (4 Marks)

- c) Let $T:\mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation defined by T(x, y, z) = (x + 2y z, y + z, x + y 2z). Find a basis and the dimension of the image of T.(4 Marks)
- d) Find the angle between the vector $\frac{u}{c} = -i + 2j + k$ and $\frac{v}{c} = 2i j + 2k$. (4 Marks)
- e) Find the distance between the parallel planes x + 2y 2z = 3 and 2x + 4y 4z = 7. (4 Marks)
- f) Show that $w = \{(x, y, z) | x + y + z = 0\}$ is a subspace of \mathbb{R}^3 . (4 Marks)
- g) Determine whether or not the transformation $T:\mathbb{R}^3 \to \mathbb{R}^3$ defined by T(x, y, z) = (x y, y z, 2x) in linear. (4 Marks)
- h) Show that $T:\mathbb{R}^3 \to \mathbb{R}^3$ defined by T(x, y, z) = (x + z, x z, y) is invertible, hence find T^{-1} . (4 Marks)

QUESTION TWO (20 MARKS)

a) Find the equation of the plane passing through the points P(-4,-1,-1), Q(-2,0,1) and R(-1,-2,-3).
(6 Marks)

- b) Show that $T:\mathbb{R}^3 \to \mathbb{R}^3$ defined by T(x, y,) = (x y, 2x = 3y, 4x) is a linear mapping. (6 Marks)
- c) Let $T:\mathbb{R}^3 \to \mathbb{R}^3$ be the linear mapping defined by T(x, y, z) = (x + 2y z, y + z, x + y 2z), find a basis and the dimension of
 - i. The image of T. (4 Marks)
 - ii. The Kernel of T. (4 Marks)

QUESTION THREE (20 MARKS)

- a) Let W be a subspace of \mathbb{R}^5 spanned by (1,-2,0,0,3), (2,-5,-3,-2,6) (0,5,15,10,0) and (2, 6,18,8,6). Find the dimension and a basis of W. (6 Marks)
- b) show that the vectors u=(1,2,3), v=(0,1,2) and w=(0,0,1) span \mathbb{R}^3 . (5 Marks)
- c) Let u and w be the following subspace of \mathbb{R}^4 .

 $u = \{(a, b, c, d) | b - 2c + d = 0\}$ $w = \{(a, b, c, d) | a = d, b = 2c\}$

Find the dimensions and a basis of

i.	u	(3 Marks)
ii.	W	(3 Marks)
iii.	$u \cap w$	(3 Marks)

QUESTION FOUR (20 MARKS)

- a) Use the vectors $a = \mathbf{i} + \mathbf{j} - 3\mathbf{k}, \quad b = 2\mathbf{i} + \mathbf{j} + 2\mathbf{k} \quad \text{and} \quad c = 3\mathbf{i} - 2\mathbf{j} - \mathbf{k} \text{ to prove that } \mathbf{a} \times (\mathbf{b} + \mathbf{c}) = \mathbf{a} \times \mathbf{b} + \mathbf{a} \times \mathbf{c}.$ (6 Marks)
- b) Write the vector $\overset{v}{\sim} = (1, -2, 5)$ as a linear combination of the vector $e_1 = (1, 1, 1), e_2 = (1, 2, 3)$ and $e_3 = (2, -1, 1).$ (6 Marks)
- c) Let V be the vector space of polynomial of degree ≤ 3 over \mathcal{R} . Determine whether or not the polynomials $u = t^3 - 3t^2 + 5t + 1$, $v = t^3 - t^2 + 8t + 2$ and $w = 2t^3 - 4t^2 + 9t + 5$ are linearly dependent. (6 Marks)
- d) Determine whether or not $u = \{(x, y, z) | xy = 0\}$ is a subspace of \mathbb{R}^3 .

(2 Marks)