MERU UNIVERSITY CロLLEGE ロF SCIENCE \＆x TECHNDLロGY
 P．O．Box 972－60200 Meru－Kenya．Tel：020－2092048， 0202069349

University Examinations 2011／2012

FIRST YEAR，SECOND SEMESTER EXAMINATIONS FOR THE DEGREE OF BACHELOR OF SCIENCE IN MATHEMATICS AND COMPUTER SCIENCE

SMA 2201：LINEAR ALGEBRA 1

DATE：APRIL 2012
TIME： 2 HOURS
INSTRUCTIONS：Answer question one and any other two questions

QUESTION ONE（30 MARKS）

a）Determine k so that the vectors ${ }_{\sim}^{u}=(2,3 k,-4,1,5)$ and ${ }_{\sim}^{v}=(6,-1,3,7,2 k)$ are orthogonal．
（2 Marks）
b）Determine whether or not the vectors ${ }_{\sim}^{u}=(6,2,3,4),{ }_{\sim}^{v}=(0,5,-3,1)$ and ${ }_{\sim}^{w}=(0,0,7,-2)$ are independent．
c）Let $\mathrm{T}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear transformation defined by $T(x, y, z)=(x+2 y-$ $z, y+z, x+y-2 z)$ ．Find a basis and the dimension of the image of T．（4 Marks）
d）Find the angle between the vector ${ }_{\sim}^{u}=-\boldsymbol{i}+2 \boldsymbol{j}+\boldsymbol{k}$ and ${ }_{\sim}^{v}=2 \boldsymbol{i}-\boldsymbol{j}+2 \boldsymbol{k}$ ． （4 Marks）
e）Find the distance between the parallel planes $x+2 y-2 z=3$ and $2 x+4 y-$ $4 z=7$ ．
f）Show that $w=\{(x, y, z) \mid x+y+z=0\}$ is a subspace of \mathbb{R}^{3} ．
g）Determine whether or not the transformation $\mathrm{T}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined by $T(x, y, z)=$ $(x-y, y-z, 2 x)$ in linear．
（4 Marks）
h）Show that $\mathrm{T}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined by $T(x, y, z)=(x+z, x-z, y)$ is invertible， hence find T^{-1} ．
（4 Marks）

QUESTION TWO（20 MARKS）

a）Find the equation of the plane passing through the points $\mathrm{P}(-4,-1,-1), \mathrm{Q}(-2,0,1)$ and $\mathrm{R}(-1,-2,-3)$ ．
b) Show that $\mathrm{T}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined by $T(x, y)=,(x-y, 2 x=3 y, 4 x)$ is a linear mapping.
(6 Marks)
c) Let $\mathrm{T}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear mapping defined by $T(x, y, z)=(x+2 y-z, y+$ $z, x+y-2 z$), find a basis and the dimension of
i. The image of T .
(4 Marks)
ii. The Kernel of T.
(4 Marks)

QUESTION THREE (20 MARKS)

a) Let W be a subspace of \mathbb{R}^{5} spanned by $(1,-2,0,0,3),(2,-5,-3,-2,6)(0,5,15,10,0)$ and ($2,6,18,8,6$). Find the dimension and a basis of W.
b) show that the vectors $u=(1,2,3), v=(0,1,2)$ and $w=(0,0,1)$ span \mathbb{R}^{3}.
c) Let u and w be the following subspace of \mathbb{R}^{4}.

$$
\begin{aligned}
& u=\{(a, b, c, d) \mid b-2 c+d=0\} \\
& w=\{(a, b, c, d) \mid a=d, b=2 c\}
\end{aligned}
$$

Find the dimensions and a basis of
i. u
(3 Marks)
ii. w
(3 Marks)
iii. $u \cap w$
(3 Marks)

QUESTION FOUR (20 MARKS)

a) Use the vectors

$$
\begin{align*}
& a \\
& \underset{\sim}{\sim}=\boldsymbol{i}+\boldsymbol{j}-3 \boldsymbol{k}, \stackrel{b}{\sim}=2 \boldsymbol{i}+\boldsymbol{j}+2 \boldsymbol{k} \tag{6Marks}\\
& (b+c)=a \times b+a \times c .
\end{align*} \text { and }_{\sim}^{c}=3 \boldsymbol{i}-2 \boldsymbol{j}-\boldsymbol{k} \text { to prove that } a \times
$$

b) Write the vector ${ }_{\sim}^{v}=(1,-2,5)$ as a linear combination of the vector $e_{1}=$ $(1,1,1), e_{2}=(1,2,3)$ and $e_{3}=(2,-1,1)$.
(6 Marks)
c) Let V be the vector space of polynomial of degree ≤ 3 over \mathcal{R}. Determine whether or not the polynomials $u=t^{3}-3 t^{2}+5 t+1, v=t^{3}-t^{2}+8 t+2$ and $w=2 t^{3}-4 t^{2}+9 t+5$ are linearly dependent.
d) Determine whether or not $u=\{(x, y, z) \mid x y=0\}$ is a subspace of \mathbb{R}^{3}.
(2 Marks)

