

University Examinations 2012/2013

FIRST YEAR, SECOND SEMESTER EXAMINATIONS FOR THE DEGREE OF BACHELOR OF SCIENCE IN ACTURIAL SCIENCE AND BACHELOR OF SCIENCE IN MATHEMATICS AND COMPUTER SCIENCE

SMA 2201: LINEAR ALGEBRA I

DATE: AUGUST 2012

TIME: 2 HOURS

(4 Marks)

INSTRUCTIONS: Answer question one and any other two questions

QUESTION ONE (30 MARKS)

- a) Determine k so that the vectors $\frac{u}{2} = (2,3k, -4,1,5)$ and $\frac{v}{2} = (6, -1,3,7,2k)$ are orthogonal. (2 Marks)
- b) Determine whether or not the vectors $\frac{u}{2} = (6,2,3,4), \frac{v}{2} = (0,5,-3,1)$ and $\frac{w}{2} = (0,0,7,-2)$ are independent. (4 Marks)
- c) Let $T:\mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation defined by T(x, y, z) = (x + 2y z, y + z, x + y 2z). Find a basis and the dimension of the image of T.
- d) Let V be the vector space of polynomials of degree ≤ 3 over \mathcal{R} . Determine whether or not the polynomials $u = t^3 - 3t^2 + 5t + 1$, $v = t^3 - t^2 + 8t + 2$ and $w = 2t^3 - 4t^2 + 9t + 5$ are linearly dependent. (5 Marks)
- e) Write the vector $\stackrel{v}{\sim} = (1, -2, 5)$ as a linear combination of the vectors $e_1 = (1, 1, 1), e_2 = (1, 2, 3)$ and $e_3 = (2, -1, 1).$ (5 Marks)
- f) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be defined by T(x, y, z) = (x 3y 2z, y 4z, z), determine whether T is invertible and if so find the inverse of T. (5 Marks)
- g) Show that $\{(1,1,1), (0,1,1), (0,1,-1)\}$ span \mathbb{R}^3 . (5 Marks)

QUESTION TWO (20 MARKS)

- a) Let W be a subspace of \mathbb{R}^5 spanned by (1,-2,0,0,3), (2,-5,-3,-2,6), (0,5,15,10,0) and (2, 6,18,8,6). Find the dimension and a basis of W. (4 Marks)
- b) Determine whether or not the following are subspaces of \mathbb{R}^3 i. $w = \{(x, y, z) | x + y + z = 0\}$ (3 Marks)

- ii. $u = \{(x, y, z) | xy = 0\}$ (2 Marks) c) Show that the vectors u=(1,2,3), v=(0,1,2) and w=(0,0,1) span \mathbb{R}^3 . (5 Marks)
- d) Let u and w be the following subspace of \mathbb{R}^4 .
 - $u = \{(a, b, c, d) | b 2c + d = 0\}$ $w = \{(a, b, c, d) | a = d, b = 2c\}$

Find the dimensions and a basis of

- i. *u* (2 Marks) ii. *w* (2 Marks)
- iii. $u \cap w$ (2 Marks) (2 Marks)

QUESTION THREE (20 MARKS)

- a) Find the distance between the parallel planes x + 2y 2z = 3 and 2x + 4y 4z = 7. (4 Marks)
- b) Find the equation of the plane passing through point P(-4,-1,-1), Q(-2,0,1) and R(-1,-2,-3). (6 Marks)
- c) Show that $T:\mathbb{R}^2 \to \mathbb{R}^3$ defined by T(x, y) = (x y, 2x + 3y, 4x) is a linear mapping. (4 Marks)
- d) Let $T:\mathbb{R}^3 \to \mathbb{R}^3$ be the linear mapping defined by T(x, y, z) = (x + 2y z, y + z, x + y 2z). Find the basis and the dimension of the i. Image of T. (3 Marks)
 - ii. Kernel of T. (3 Marks)

QUESTION FOUR (20 MARKS)

- a) Prove that the diagonals of a rhombus are perpendicular. (4 Marks)
 b) Find the equation of the plane passing through the points P (1,2,-1), Q(2,3,1) and R(3,-1,2). (5 Marks)
 c) Find the distance between the point (1, -4, -3) and the plane 2x 3y + 6z = -1.
- d) Find the parametric equations for the line of intersection of the planes 3x + 2y 4z 6 = 0 and x 3y 2z 4 = 0. (5 Marks)
- e) Find the angle between the vectors $\overset{u}{\sim} = -i + 2j + k$ and $\overset{v}{\sim} = 2i j + 2k$.

(3 Marks)

(3 Marks)