

MERU UNIVERSITY OF SCIENCE AND TECHNOLOGY

P.O. Box 972-60200 – Meru-Kenya. Tel: 020-2069349, 061-2309217. 064-30320 Cell phone: +254 712524293, +254 789151411 Fax: 064-30321 Website: www.must.ac.ke Email: info@must.ac.ke

University Examinations 2013/2014

SECOND YEAR, SECOND SEMESTER EXAMINATIONS FOR DEGREE OF BACHELOR OF SCIENCE IN COMPUTER SCIENCE/ BACHELOR OF SCIENCE IN MATHEMATICS AND COMPUTER SCIENCE

SMA 2202: ALGEBRAIC STRUCTURES

DATE: DECEMBER 2013

TIME: 2 HOURS

INSTRUCTIONS: Answer question **one** and any other **two** questions

QUESTION ONE – (30 MARKS)

- (a) Consider the function of $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$. Determine (i) $f^{-1}[\{x: 4 \le x \le 25\}]$ (2 Marks)
 - (ii) $f^{-1}[-9]$ (2 Marks)

(b) Let $R = \{(1,1), (2,3), (3,2)\}$ be the relation on $x = \{1, 2, 3\}$. Determine whether R is

(i) Reflexive(2 Marks)(ii) Symmetric(2 Marks)(iii)Transitive(2 Marks)

(c) Show that the set \mathbb{Z} of all integers under the binary operation * defined by $a * b = a + b + 3, \forall a, b \in \mathbb{Z}$ is an abelian group. (5 Marks)

(d) Consider the binary operation table below defined over a set $S = \{a, b, c, d\}$

*	a	b	с	d	
a	a	b	с	d	
b	b	a	c	d	
c	c	d	c	d	
d	d	с	с	d	

Determine whether * in the table satisfies

- Commutative law (i) (3 Marks) (3 Marks)
- (ii) Associative law
- (e) Let f and g be two permutations defined on $S = \{a, b, c, d\}$ as, follows:

$$f = \begin{pmatrix} a & b & c & d \\ c & a & d & b \end{pmatrix} \text{ and } g = \begin{pmatrix} a & b & c & d \\ b & c & d & a \end{pmatrix}$$

Show that the composition of these two permutations is not commutative. (4 Marks)

(f) Let $A = \{1, 2, 3, 4, 5\}$ and $f: A \rightarrow A$ be defined by the diagram.

Find: *f*[{1, 3, 5}] (i) (1 Mark) $f^{-1}[\{2,3,4\}]$ (ii) (2 Marks) $f^{-1}[\{3,5\}]$ (2 Marks) (iii)

QUESTION TWO – (20 MARKS)

(a) Let $A = \{1, 2, 3, 4\}$, $B\{x, y, z, w\}$ and $C = \{5, 6, 7, 8\}$ and let $u = \{(1, x), (1, y), (2, x), (3, w), (4, w)\}$ and $v = \{(y, 5), (y, 6), (z, 8), (w, 7)\}$ Determine VoU (7 Marks)

(b) Let *R* be the relation < from $A = \{1, 2, 3, 4\}$ to $B = \{1, 3, 5\}$.

(i)	Write <i>R</i> as a set of ordered pairs.	(2 Marks)
(ii)	Plot R on a coordinate diagram of $A \times B$.	(4 Marks)
(iii)	Find the domain of R, range of R and R^{-1} .	(3 Marks)
(iv)	Find $R \circ R^{-1}$	(4 Marks)

QUESTION THREE – (20 MARKS)

- (a) Prove that the set of non-zero integers modulo 6 under X_6 is not a group. (6 Marks)
- (b) Show that the set G composed of f_1, f_2, f_3, f_4 of 4 transformations of the set of complex numbers in itself defined by $f_1(\mathbb{Z}) = \mathbb{Z}$, $f_2(\mathbb{Z}) = -\mathbb{Z}$, $f_2(\mathbb{Z}) = \frac{1}{\mathbb{Z}}$, $f_4(\mathbb{Z}) = -\frac{1}{\mathbb{Z}}, \forall \mathbb{Z} \in c$ is an Abelian group with composite operation *i*. $e(G, \circ)$ where $G = \{f_1, f_2, f_3, f_4\}$ and $f: \mathbb{C} \to \mathbb{C}$. (14 Marks)

QUESTION FOUR – (20 MARKS)

(a) Given that \propto and β are two permutations of S_7 , where

$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 6 & 5 & 4 & 3 & 2 & 1 \end{pmatrix} and \beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 6 & 5 & 4 & 2 & 1 & 3 \end{pmatrix}$$

Find

(i) $(\propto \beta)^{-1}$ (3 Marks)

(ii)
$$\alpha^{-1} \beta^{-1}$$
 (4 Marks)

(b) Find the group of symmetries of a regular hexagon. (6 Marks)

(c) Prove that $(H = \{0, 2, 4\}, +_6)$ is a subgroup of the group of integers modulo 6.

(7 Marks)