MERU UNIVERSITY OF SCIENCE AND TECHNOLOGY

P.O. Box 972-60200 - Meru-Kenya.

Tel: 020-2069349, 061-2309217. 064-30320 Cell phone: +254 712524293, +254 789151411
Fax: 064-30321
Website: www.must.ac.ke Email: info@must.ac.ke

University Examinations 2013/2014

SECOND YEAR, SECOND SEMESTER EXAMINATIONS FOR DEGREE OF BACHELOR OF SCIENCE IN COMPUTER SCIENCE/ BACHELOR OF SCIENCE IN MATHEMATICS AND COMPUTER SCIENCE

SMA 2202: ALGEBRAIC STRUCTURES

DATE: DECEMBER 2013
INSTRUCTIONS: Answer question one and any other two questions
QUESTION ONE - (30 MARKS)
(a) Consider the function of $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=x^{2}$. Determine
(i) $f^{-1}[\{x: 4 \leq x \leq 25\}]$
(ii) $\quad f^{-1}[-9]$
(2 Marks)
(b) Let $R=\{(1,1),(2,3), \quad(3,2)\}$ be the relation on $x=\{1,2,3\}$. Determine whether R is
(i) Reflexive
(2 Marks)
(ii) Symmetric
(2 Marks)
(iii)Transitive
(2 Marks)
(c) Show that the set \mathbb{Z} of all integers under the binary operation $*$ defined by $a * b=a+b+3, \forall a, b \in \mathbb{Z}$ is an abelian group.
(d) Consider the binary operation table below defined over a set $S=\{a, b, c, d\}$

$*$	a	b	c	d
a	a	b	c	d
b	b	a	c	d
c	c	d	c	d
d	d	c	c	d

Determine whether $*$ in the table satisfies
(i) Commutative law
(ii) Associative law
(3 Marks)
(e) Let f and g be two permutations defined on $S=\{a, b, c, d\}$ as, follows:
$f=\left(\begin{array}{llll}a & b & c & d \\ c & a & d & b\end{array}\right)$ and $g=\left(\begin{array}{llll}a & b & c & d \\ b & c & d & a\end{array}\right)$
Show that the composition of these two permutations is not commutative. (4 Marks)
(f) Let $A=\{1,2,3,4,5\}$ and $f: A \rightarrow A$ be defined by the diagram.

Find:
(i) $f[\{1,3,5\}]$
(1 Mark)
(ii) $\quad f^{-1}[\{2,3,4\}]$
(iii) $f^{-1}[\{3,5\}]$

QUESTION TWO - (20 MARKS)

(a) Let $A=\{1,2,3,4\}, B\{x, y, z, w\}$ and $C=\{5,6,7,8\}$ and let $u=\{(1, x),(1, y),(2, x),(3, w),(4, w)\}$ and $v=\{(y, 5),(y, 6),(z, 8),(w, 7)\}$ Determine $V o U$
(b) Let R be the relation $<$ from $A=\{1,2,3,4\}$ to $B=\{1,3,5\}$.
(i) Write R as a set of ordered pairs.
(2 Marks)
(ii) Plot R on a coordinate diagram of $A \times B$.
(iii) Find the domain of R, range of R and R^{-1}.
(iv) \quad Find $R \circ R^{-1}$

QUESTION THREE - (20 MARKS)

(a) Prove that the set of non-zero integers modulo 6 under X_{6} is not a group. (6 Marks)
(b) Show that the set G composed of $f_{1}, f_{2}, f_{3}, f_{4}$ of 4 transformations of the set of complex numbers in itself defined by $f_{1}(\mathbb{Z})=\mathbb{Z}, f_{2}(\mathbb{Z})=-\mathbb{Z}, f_{2}(\mathbb{Z})=\frac{1}{\mathbb{Z}}, f_{4}(\mathbb{Z})=-\frac{1}{\mathbb{Z}}, \forall \mathbb{Z} \in c$ is an Abelian group with composite operation i.e (G, \circ) where $G=\left\{f_{1}, f_{2}, f_{3}, f_{4}\right\}$ and $f: \mathbb{C} \rightarrow \mathbb{C}$.

QUESTION FOUR - (20 MARKS)

(a) Given that α and β are two permutations of S_{7}, where $\alpha=\left(\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 6 & 5 & 4 & 3 & 2 & 1\end{array}\right)$ and $\beta=\left(\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 6 & 5 & 4 & 2 & 1 & 3\end{array}\right)$
Find
(i) $\quad(\alpha \beta)^{-1}$
(3 Marks)
(ii) $\alpha^{-1} \beta^{-1}$
(4 Marks)
(b) Find the group of symmetries of a regular hexagon.
(6 Marks)
(c) Prove that $\left(H=\{0,2,4\},+_{6}\right)$ is a subgroup of the group of integers modulo 6 .
(7 Marks)

