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INSTRUCTIONS: Answer question one and any other two questions 

QUESTION ONE (30 MARKS) 

a) Convert the following polar equation to the equivalent Cartesian equation 𝑟 =

cos 𝜃 + sin 𝜃.         (3 Marks) 

b) Find the polar equation equivalent to the Cartesian equation 

𝑥2

25
+

𝑦2

4
= 1 .           (3 Marks) 

c) Given 𝑔 𝑥 = 𝑥 − 𝑥3.  Find the extreme values of g on [0,1] and determine at which 

number in [0,1] they occur.       (4 Marks) 

d) State the mean value theorem.      (2 Marks) 

e) Evaluate the iterated integral  

  𝑥𝑦2𝑑𝑦𝑑𝑥
 𝑥

𝑦=𝑥

1

𝑥=0
           (4 Marks) 

f) Given that 𝑓 𝑥, 𝑦 =
𝑥3𝑦−𝑥𝑦3

𝑥2+𝑦2    find 𝑓𝑥  and 𝑓𝑦 .      (6 Marks) 

g) Find the lim𝑥→0
𝑒𝑥−𝑥−1

𝑥2 .          (3 Marks) 

h) Find the Mac Laurin’s series generated by 𝑓 𝑥 = 𝑒𝑥 .     (5 Marks) 

QUESTION TWO (20 MARKS) 

a) Show that the point (2,
𝜋

2
) lies on the curve 𝑟 = 2 cos 2𝜃.     (4 Marks) 

b) Find the Cartesian equivalent of the polar equation. 

𝑟 cos  𝜃 −
𝜋

6
 = 3.          (4 Marks) 

c) Define the Taylor’s and Maclaurin’s series generated by a function f.  (4 Marks) 
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d) i)  Find the Taylor series generated by 𝑓 𝑥 =
1

𝑥
 at 𝑎 = 2.     (4 Marks) 

ii)  Show that the series is geometric and converges to 
1

𝑥
.     (4 Marks) 

QUESTION THREE (20 MARKS) 

a) Given that  𝐹 𝑥, 𝑦 =  ln⁡(4 − 𝑥2 − 𝑦2).  Find a function f of two variables and a 

function g of one variable such that 𝐹 = 𝑔𝑜𝑓.    (6 Marks) 

b) Let 𝑓 𝑥, 𝑦 = 24𝑥𝑦 − 6𝑥2𝑦.  Find 𝑓𝑥  and 𝑓𝑦  and evaluate them at (1,2). (6 Marks) 

c) Find the domain of the function 𝑓 𝑥, 𝑦 =  𝑥2 + 𝑦2 − 25.     (4 Marks) 

d) Let 𝑓 𝑥 =
1

3
𝑥3 + 2𝑥.  Find C in (0,3) such that 𝑓′ 𝑐 =

𝑓 3 −𝑓(0)

3−0
.   (4 Marks) 

QUESTION FOUR (20 MARKS) 

a) i)  define the improper integral of non negative f.    (2 Marks) 

ii)  Evaluate  𝑥𝑒−2𝑥𝑑𝑥
∞

0
.         (5 Marks) 

b) By first changing the Cartesian integral to the equivalent polar integral, evaluate  

   𝑥2 + 𝑦2 𝑑𝑦𝑑𝑥
 𝑎2−𝑥2

0

𝑎

0
          (5 Marks) 

c) Find the centre of gravity of a lamina bounded by the parabola 𝑦 = 𝑥2 and the line 

𝑦 = 𝑥 + 2.          (8 Marks) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


