

MERU UNIVERSITY OF SCIENCE AND TECHNOLOGY

P.O. Box 972-60200 – Meru-Kenya.

Tel: 020-2069349, 061-2309217. 064-30320 Cell phone: +254 712524293, +254 789151411 Fax: 064-30321 Website: www.must.ac.ke Email: info@mucst.ac.ke

University Examinations 2012/2013

SECOND YEAR, FIRST SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE IN ACTUARIAL SCIENCE, BACHELOR OF SCIENCE IN STATISTICS/BACHELOR OF SCIENCE IN MATHEMATICS AND COMPUTER SCIENCE AND BACHELOR OF SCIENCE IN COMPUTER SCIENCE

SMA 2200/STA 2204: CALCULUS III/CALCULUS FOR STATISTICS

DATE: AUGUST 2013

TIME: 2 HOURS

(3 Marks)

INSTRUCTIONS: Answer question one and any other two questions

QUESTION ONE (30 MARKS)

- a) Replace the Cartesian equation $\frac{x^2}{9} + \frac{y^2}{4} = 1$ by the equivalent polar equation.
- b) Evaluate $\lim_{x \to 0} (\chi^{\sin x})$ (3 Marks)
- c) Given that $f(x) = x x^3$. Find the extreme values of f on [0, 1] and determine at which number in [0,1] they occur. (4 Marks)
- d) Evaluate the iterated integral $\int_{-2}^{3} \int_{x}^{x+6} xy dy dx \qquad (4 \text{ Marks})$
- e) Find the Maclaurin's series generated by $f(x) = e^x$. (5 Marks)

f) Given that $F(x, y) = \sqrt{ln(4 - x^2 - y^2)}$. Find a function f of two variables and a function g of one variable such that F = gof. (3 Marks)

- g) Given that $f(x, y) = \frac{x^3 y xy^3}{x^2 + y^2}$, find $\frac{dy}{dx}$ and $\frac{df}{dy}$. (6 Marks)
- h) State the mean value theorem. (2 Marks)

QUESTION TWO (20 MARKS)

a) Let $f(x, y) = 24xy - 6x^2y$. Find f_x and f_y and evaluate f_x and f_y at (1,2). (6 Marks)

- b) Find the $\lim_{x \to 0} \frac{e^{x} x 1}{x^{2}}$ (4 Marks)
- c) Let $f(x) = \frac{1}{3}x^3 + 2x$. Find a number c in (0,3) such that $f'(c) = \frac{f(3-f(0))}{3-0}$.
- d) Determine whether Rolle's theorem holds for f(x) = 3 |x 3| on [0,6].(4 Marks)

QUESTION THREE (20 MARKS)

- a) Define Taylor's and Maclaurins series generated by a function f. (4 Marks)
- b) i) Find the Taylor series generated by $f(x) = \frac{1}{x} at a = 2.$ (4 Marks)
 - ii) Show that the series is geometric and converges to $\frac{1}{x}$. (4 Marks)
- c) the total resistance R of two resistors connected in parallel is given by $1/R = 1/R_1 + \frac{1}{R_2}$. Approximate the change in R if R_1 increased from 10 ohms to 10.5 ohms and R_2 decreased from 15 ohms to 13 ohms. (4 Marks)
- d) Show that the point $\left(2, \frac{\pi}{2}\right)$ lies on the curve $r = 2\cos 2\theta$. (4 Marks)

QUESTION FOUR (20 MARKS)

- a) i) find the volume of the prism whose base is the triangle in the XY-plane bounded by the x − axis and the lines y = x and x = 1 and whose top lies in the plane f(x, y) = 3 − x − y. (5 Marks)
 ii) Evaluate the double integral ∫₀^π ∫₀^{π/2} sin x² cos y² dydx (5 Marks)
- b) i) Define an improper integral. (2 Marks) ii) Evaluate the integral $\int_0^\infty x e^{-2x} dx$ (5 Marks)
- c) Find the centre of gravity of a solid hemisphere of radius r. (3 Marks)

(6 Marks)