MERU UNIVERSITY OF SCIENCE AND TECHNOLOGY

P.O. Box 972-60200 - Meru-Kenya.

Tel: 020-2069349, 061-2309217. 064-30320 Cell phone: +254 712524293, +254 789151411
Fax: 064-30321
Website: www.must.ac.ke Email: info@must.ac.ke

University Examinations 2013/2014
 SECOND YEAR, SECOND SEMESTER EXAMINATIONS FOR DEGREE OF BACHELOR OF SCIENCE IN COMPUTER SCIENCE AND BACHELOR OF SCIENCE IN MATHEMATICS AND COMPUTER SCIENCE

SMA 2221: CLASSICAL MECHANICS

INSTRUCTIONS: Answer question one and any other two questions
QUESTION ONE - (30 MARKS)
(a) A particle is moving along a curve defined by parametric equation

$$
\begin{gathered}
x=2 \cos 3 t \\
y=2 \sin 3 t \\
z=4 t^{2}
\end{gathered}
$$

(i) Find velocity and acceleration at any given time t.
(ii) Find the magnitude of velocity and acceleration at $t=0$.
(2 Marks)
(b) A particle moves in a circle of radius 20 cm . If its tangential speed is $40 \mathrm{cms}^{-1}$. Find
(i) Angular speed.
(2 Marks)
(ii) Angular and normal acceleration.
(4 Marks)
(c) (i) State the Newton second law of motion.
(1 Mark)
(ii) A car of mass 1000 kg moves uphill along a street inclined at 30° to the horizontal. Determine the force which the car must produce to move with uniform motion and with an acceleration of $0.2 \mathrm{~m} / \mathrm{s}^{2}$. (Neglect the effect of friction).
(6 Marks)
(d) A force $\vec{F}=6 \mathrm{~N}$ acts on a particle whose mass $=2 \mathrm{~kg}$. if the particle starts at rest. Find the work done by force in the first and second second.
(6 Marks)
(e) Particle moves with force field $\vec{F}=2 x y z i+x^{2} z j+x^{2} y k$. Show that the force \vec{F} is conservative. Find the potential associated with the force field.
(5 Marks)
(f) Show that the equation $x=4 \cos 2 t+3 \sin 2 t+3$ execute simple harmonic motion.
(4 Marks)

QUESTION TWO - (20 MARKS)

(a) The position vectors of two particles are given as
$\overrightarrow{r_{1}}=t \boldsymbol{i}-t^{2} \boldsymbol{j}+(2 t+3) \boldsymbol{k}$
$\overrightarrow{r_{2}}=(2 t-3 t) \boldsymbol{i}+4 t \boldsymbol{j}-t^{3} \boldsymbol{k}$. Find the relative velocity and acceleration of the second particle with respect to the first at $t=1$
(7 Marks)
(b) The power applied to a particle by a force field is given as a function of time t by $p(t)=3 t^{2}-4 t+2$. Find the work done in moving a particle from p_{1} at $t=2$ to p_{2} at $t=4$ respectively.
(c) A particle of mass 40 kg requires a constant force to accelerate it from velocity $\overrightarrow{v_{1}}=(4 i-5 j+3 k) \mathrm{m} / \mathrm{s}$ to a velocity $\overrightarrow{v_{2}}=(8 i+3 j+5 k) \mathrm{m} / \mathrm{s}$ in 20 seconds. Find:
(i) The constant force needed to accelerate the particle and its magnitude.
(ii) The work done by the particle in (i) above.

QUESTION THREE - (20 MARKS)

(a) A particle of unit mass moves along curve in a force field $\vec{F}=(6 i-8)-60 t^{3} j+\left(20 t^{3}+36 t^{2}\right) k$ where t is the time. If initial position and velocity are respectively given by:

$$
\begin{aligned}
& \vec{r}_{0}=2 i-3 k \\
& \overrightarrow{v_{0}}=5 i+4 j
\end{aligned}
$$

Find:
(i) The position, velocity, acceleration and momentum of particles at $t=2$.
(ii) The Kinetic energy (K.E) at $t=2$.
(2 Marks)
(iii) The work done from $t=0$ to $t=2$
(iv) The power applied to the particle at any time t.
(3 Marks)
(b) A particle of unit mass moves along the curve $\vec{r}=a \cos w t i+b \sin w t j$. Find the torque.
(3 Marks)

QUESTION FOUR - (20 MARKS)

(a) A bullet is fired straight upward with a velocity of $98 \mathrm{~m} / \mathrm{s}$ from the top of a building 490m high. Find:
(i) The maximum height above the ground the bullet reaches.
(ii) Time required to reach maximum height.
(iii) The velocity of the bullet when it reaches ground.
(b) (i) Two cars A and B are traveling in the same direction with constant velocities V_{A} and V_{B} respectively. When car A is at distance d from B , brakes are applied decelerating at a rate r. Demonstrate that in order to collide.
$V_{A}-V_{B} \geq \sqrt{2 a d}$
(ii) Two particles A and B are moving in the same direction, when $t=0$, their respective velocities are $1 \mathrm{~cm} / \mathrm{s}$ and $3 \mathrm{~cm} / \mathrm{s}$ and their respective accelerations are $2 \mathrm{~cm} / \mathrm{sec}^{2}$ and $1 \mathrm{~cm} / \mathrm{s}^{2}$. If the particle A is 1.5 cm ahead of B at $t=0$, after how long will they be side by side.

QUESTION FIVE - (20 MARKS)

(a) In a damped harmonic oscillation, a restoring force is given by $m\left(k^{2}+n^{2}\right) x$ and the damping force is $2 m k u$ where m is the mass, k is a positive constant and u is the velocity. The body starts from rest at $t=0$ from position $x=a$. Show that its position at time t is given by:
$x=q / n(n \cos n t+k \sin n t) e^{-k t}$
(b) A particle travels with uniform angular speed to around a circle of radius a prove that its projection on the diameter oscillates with simple harmonic motion of period $\frac{2 \pi}{w}$ about the center of the circle.
(c) A particle on a circle of radius R has constant angular acceleration \propto. If a particle starts from rest. Show that after time t its angular velocity $w=\propto t$.
(5 Marks)

