MERU UNIVERSITY OF SCIENCE AND TECHNOLOGY

P.O. Box 972-60200 - Meru-Kenya.

Tel: 020-2069349, 061-2309217. 064-30320 Cell phone: +254 712524293, +254 789151411
Fax: 064-30321
Website: www.must.ac.ke Email: info@must.ac.ke

University Examinations 2013/2014

SECOND YEAR, SECOND SEMESTER EXAMINATIONS FOR DEGREE OF BACHELOR OF SCIENCE IN MATHEMATICS AND COMPUTER SCIENCE

SMA 2220: VECTOR ANALYSIS

DATE: DECEMBER 2013
TIME: 2 HOURS
INSTRUCTIONS: Answer question one and any other two questions
QUESTION ONE - (30 MARKS)
(a) Three forces of $4 N, 6 N$ and $8 N$ act on a point as show in Fig. 1. Calculate the magnitude of the resultant force and its direction relative to the 4 N force. (4 Marks)

Fig. 1

$$
4 \mathrm{~N}
$$

(b) Given that $\vec{r}(t)=t \sin t \hat{i}+t \cos t \hat{j}+t^{2} \hat{k}$, compute $\frac{d \vec{r}}{d t}$ at $t=\frac{\pi}{2}$. (3 Marks)
(c) A surface has an equation given by $x^{3}+3 x y+z^{2}=11$. Find the equation of the tangent plane to this surface at the point $(1,2,2)$.
(4 Marks)
(d) Find the parametric equations and the rectangular equations for the line through the points $P(3,2,1)$ and $Q(-1,2,4)$.
(e) Given that $\vec{a}=\hat{i}-3 \hat{j}-3 \hat{k}, \vec{b}=\hat{i}+\hat{j}+2 \hat{k} \quad$ and $\vec{c}=3 \hat{i}+2 \hat{j}-\hat{k}$, find the angle between vectors $\vec{a}+\vec{b}$ and $\vec{b}-2 \vec{c}$.
(f) The Cartesian equation of a cone is given by $x^{2}+y^{2}=z^{2}$. Find an equation for this cone in spherical co-ordinates (simplify your answer).
(g) Find div \vec{F} at the point $(3,2,1)$ given that $\vec{F}(x, y, z)=e^{x} \sin y \hat{i}-e^{x} \cos y \hat{j}+z^{2} \hat{k}$.
(h) Evaluate $\int_{c} y d x+x^{2} d y$ where c is the parabolic arc given by $y=4 x-x^{2}$ from $(5,0)$ to $(2,3)$
(4 Marks)

QUESTION TWO - (20 MARKS)

(a) Given that $\vec{a}=3 \hat{i}+\hat{j}+\hat{k}, \quad \vec{b}=2 \hat{i}-\hat{j}+2 \hat{k}$ and $\vec{c}=\hat{i}+\hat{j}+\hat{k}$
i. Find a unit vector normal to the plane containing vectors $\vec{a}+(\vec{a} \cdot \vec{b}) \vec{c}$ and \vec{c}.
ii. Show that the normal to the plane containing the vectors \vec{a} and \vec{b} and the normal to a plane containing vectors $(\vec{b} \cdot \vec{c}) \vec{b}$ are parallel.
(b) The vector $\vec{r}(t)=3 \cos t \hat{i}+3 \sin t \hat{j}+\left(t^{3}-t^{2}\right) \hat{k}$ gives the position of a moving body at time t . Find the times at which the body's velocity and acceleration are orthogonal.
(5 Marks)
(c) Compute the values of constant a, b, c so that the directional derivative of $\phi=a x y^{2}+b y z+c z^{2} x^{3}$ at $(1,2,-1)$ has a maximum of magnitude 64 in a direction parallel to the z -axis.

QUESTION THREE - (20 MARKS)

(a) (i) State Green's theorem in the plane.
(ii) Verify Green's theorem in the plane for $\oint_{c}\left(x y-x^{2}\right) d x+x^{2} \quad y d y$ where c is a triangle $O(0,0), A(1,0), B(1,1)$
(b) Given that $\vec{F}(x, y, z)=\hat{i}+3 x \hat{j}+2 y \hat{k}, \quad \vec{G}(x, y, z)=x \hat{i}-y \hat{j}+z \hat{k}$, find $\vec{\nabla} \bullet(\vec{F} \times \vec{G})$
(c) Use vector method to show that the points $P(2,-1,5), Q(6,0,6), \quad R(14,2,8)$ are collinear. (3 Marks)

QUESTION FOUR - (20 MARKS)

(a) A space curve is represented by the vector equation $\vec{r}(t)=e^{t} \cos t \hat{i}+e^{t} \sin t \hat{j}+e^{t} \hat{k}$. Compute (simplifying your answers):
i. The unit tangent vector, \vec{T} of the curve.
ii. The principal normal, \vec{N} of the curve
iii. The Binomial vector, \vec{B}
(3 Marks)
(b) Convert the point $\left(3, \frac{\pi}{4}, 1\right)$ from cylindrical coordinates to rectangular coordinates.
(c) Given that $\vec{A}=2 \hat{i}-3 \hat{j}+6 \hat{k}$ and $\vec{B}=2 \hat{i}+4 \hat{j}+4 \hat{k}$, find $\operatorname{proj}_{\vec{A}} \vec{B}$
(d) Using the curl test, determine whether
$\vec{F}(x, y, z)=\left(3 x^{2} y^{2}+y z^{2}\right) \hat{i}+\left(2 x^{3} y+x z^{2}\right) \hat{j}+2 x y z \hat{k}$ is conservative and if it is, find a scalar function associated with $\vec{F}(x, y, z)$ such that $\vec{\nabla} \phi=\vec{F}(x, y, z)$
(5 Marks)

