

University Examinations 2012/2013

SECOND YEAR, SECOND SEMESTER EXAMINATIONS FOR THE DEGREE OF BACHELOR OF SCIENCE IN MATHEMATICS AND COMPUTER SCIENCE

SMA 2220: VECTOR ANALYSIS

DATE: DECEMBER 2012

TIME: 2 HOURS

INSTRUCTIONS: Answer question **one** and any other **two** questions

QUESTION ONE (30 MARKS)

a)	Verify that the following points are not collinear hence find an equation of the plane	
	containing these points $A(3,5,-2), B(5,2,1), C(7,7,4)$.	(6 Marks)
b)	Using vectors $\vec{A} = < 2, 1, 4 > and B = < 3, 5, -1 >$.	
	i. Compute $\vec{A} \cdot \vec{B}$.	(2 Marks)
	ii. Find the angle between the vectors \vec{A} and \vec{B} .	(3 Marks)
c)	Compute $div(\vec{B} \times \vec{A})$ given that $\vec{A} = 2xyi + x^2zj + k$ and $\vec{B} = yzi + xyj - xk$.	
		(3 Marks)
d)	Convert the point $(1,\sqrt{2}, 1)$ from Cartesian to spherical coordinates.	(5 Marks)
e)	Compute the arc length of the curve $\vec{r}(t) = 3 \sin 4t \mathbf{i} + 3 \cos 4t \mathbf{j} + 5t \mathbf{k}$ in the	
	interval $0 \le t \le 2\pi$ giving your answer in terms of π .	(4 Marks)
f)	A plane has a normal vector $n < 3, -2, -4 >$. Find the equation of this plane if the	
	point (1,3,2) lies on this plane.	(3 Marks)
g)	Find the volume of the parallelpiped bound by the vectors $\vec{A} = < 2, -1, 4 >$,	
	$\vec{B} = <1,3,-2 > and \vec{C} = <3,1,1 >$ where 1 unit is 1 meter.	(4 Marks)
QUESTION TWO (20 MARKS)		

- a) Given the points $A(-1,3,\sqrt{3})$ and B(4,6,0)
 - i. Find the angle that the vector \overrightarrow{AB} makes with each of the coordinates axis.

(5 Marks)

- ii. Compute $proj_{\vec{A}}\vec{B}$ where $\vec{A} = \overrightarrow{OA}$ and $\vec{B} = \overrightarrow{OB}$. (4 Marks)
- b) Given an ellipsoid $x^2 + 3y^2 + 4z^2 = 25$, compute the following at the point P(3,2,1)
 - i. The parametric equation of the normal line. (5 Marks)

- ii. The equation of the tangent plane to the ellipsoid. (3 Marks)
- c) Compute the unit tangent vector to the curve $\vec{r}(t) = 2 \sin 3t \, i + t j 2 \cos 3t \, k$. (3 Marks)

QUESTION THREE (20 MARKS)

- a) Find the directional derivative to the function $f(x, y) = x^2 + 4xy$ at the point (1,2) in the direction from A(-2,1) to B(3,2). (5 Marks)
- b) Given the points A(1, -3, 6), B(9, -9, 1) and C(-6, -29, 26) in space.
 - i. Find the lengths of a triangle ABC. (6 Marks)
 - ii. Prove that triangle ABC is right angled and state the vertex at which it is right angled. (3 Marks)
- c) If $\vec{f} = (3x^2 + 6y)\mathbf{i} 14yz\mathbf{j} + 20xz^2\mathbf{k}$ find the work done in moving the force field \vec{f} along a curve C given by $x = t, y = t^2, z = t^3$ from (0,0,0) to (1,1,1).(6 Marks)

QUESTION FOUR (20 MARKS)

- a) The position of a particle in space at time t is given by $\vec{S} = 2 \cos 2t \, i + 2 \sin 2t \, j + 3t \, k$.
 - i. Find the velocity and acceleration of the particle at any time. (3 Marks)
 - ii. Find the speed of the particle.
 - iii. Find the length along the curve of the trajectory from the point A(2,0,0) to B(2,0, 3π). (4 Marks)
- b) Use the divergence theorem to evaluate the integral $\iint_{s} \vec{F} \cdot \vec{n} ds$ where $\vec{F} = 2x^{2}yi + yzj z^{2}k$ and S is the surface area of the cube bounded by x = 1, x = 2, y = 1, y = 2, z = 1, z = 2. (10 Marks)

(3 Marks)