EGERTON UNIVERSITY

MATHEMATICS DEPARTMENT

MATH 210 -- C.A.T 2

1. Given a matrix
$$A = \begin{pmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{pmatrix}.$$

- a) Find the characteristic and minimal polynomials of A. $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} G \cdot \partial_{x} 3 \cdot 1$
- b) Show that A is a zero of its own characteristic polynomial.
- c) Determine eigenspaces corresponding to each eigenvalue.
- d) Give the geometric and algebraic multiplicities of each eigenvalue of A.
- e) Is matrix A diagonalizable? If so, use (c) to find the diagonal matrix of A.
- 2. a) Given that $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a map defined by $T(\underline{x}) = T(x_1, x_2) = (x_1 + 2x_2, x_1)$. Is T as defined linear?
 - b) Given that $T: \mathbb{R}^3 \to \mathbb{R}^3$ is defined by

$$T\left(\begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}\right) = \begin{bmatrix} 2u_1 - 3u_2 + u_3 \\ u_1 - 2u_2 + u_3 \\ u_1 - 3u_2 + 2u_3 \end{bmatrix}$$

PERMIT

- (i) Find the matrix of T w.r.t. the standard basis of \mathbb{R}^3 .
- (ii) Use the similarity theorem to compute the matrix of T w.r.t the basis B if $B' = \{v_1 = (1,1,1), v_2 = (1,0,2), v_3 = (0,1,0)\}.$
- 3. a) If u = (1, -2, 0, 1) and v = (-3, 1, 0, -2) are vectors in an inner product space \mathbb{R}^4 with Euclidean inner product, find the angle θ between them.
 - b) Given an inner product $\langle \underline{u}, \underline{v} \rangle = 2u_1v_1 + u_2v_2 + u_3v_3$ for vectors \underline{u} and \underline{v} in \mathbb{R}^3 .
 - (I) Is this an inner product space?
 - (ii) Transform the vectors $\underline{u}_1 = (1,1,1)$, $\underline{u}_2 = (1,1,0)$ and $\underline{u}_3 = (1,0,0)$ into an orthonormal basis.

