CHUKA

UNIVERSITY EXAMINATIONS
EXAMINATION FOR THE AWARD OF CERTIFICATE FOR BRIDGING COURSE IN MATHEMATICS

MATH OO10: GEOMETRY AND VECTORS

STREAM: CBM
TIME: 2 HOURS
DAY/DATE: MONDAY 12/4/2010
11.30A.M. - 1.30P.M.

INSTRUCTIONS:

- Answer all Questions in Section A and any three questions in Section B.
- All working must be clearly and neatly shown.
- Adhere to all the instructions on your answer booklet.

SECTION A (30 MARKS)

1. The length of a room is 4 metres longer than its width. Find the length of the room if its Area is $32 \mathrm{~m}^{2}$.
[3 marks]
2. Given that $\operatorname{Sin}\left(x+30^{\circ}\right)=\operatorname{Cos} 2 x$ for $0^{\circ} \leq x \leq 90^{\circ}$, Find the value of x. Hence find the value of $\operatorname{Cos}^{2} 3 x^{\circ}$.
[3 marks]
3. The Position Vectors of P and Q are $4 j+3 j+2 k$ and $3 i-6 j+6 k$ respectively. Express vector PQ in terms of unit vector i, j and k and find $|P Q| \cdot[3$ marks]
4. A point R divides a line PQ internally in the ratio 3:4. Another point S divides the line $P R$ externally in the ratio 5:2. Given that $P Q=8 \mathrm{~cm}$, Calculate the length of RS correct to 2 decimal places.
[3 marks]
5. An open cylindrical object has radius 42 cm and length 150 cm . Calculate its total surface area and its volume.
[3 marks]
6. Point T is the midpoint of a straight line AB . Given that the position vectors of A and T are $i-j+k$ and $2 i+\frac{3}{2} k$ respectively, find the position vector of B in terms of i, j, and k.
7. Find the angle subtended at the centre of a circle by an arc of 11 cm if the diameter of the circle is 21 cm (take $\pi=\frac{22}{7}$).
8. Determine the angle between the vectors $\tilde{a}=i+2 j+2 k$ and $\tilde{b}=2 i+3 j+6 k$. [3 marks]
9. Find the equation of a line segment joining the points $\mathrm{A}(2,3)$ and $\mathrm{B}(4,7)$ and its normal equation at $(1,1)$.
10. Calculate the volume of a cone whose diameter is 14 cm and height 24 cm .

SECTION B (30 MARKS)

Answer any three Questions in this section.
11. (a) Solve for X° in the equation

$$
\begin{equation*}
6 \operatorname{Sin}(2 x-10)^{\circ}+3=0 \tag{3marks}
\end{equation*}
$$

(b) Find the equation of a perpendicular bisector of the line segment joining the points $\mathrm{A}(3,5)$ and $\mathrm{B}(-37)$.
[3 marks]
(c) State the co-ordinates of the four major points on the circumference of a circle given by $x^{2}+y^{2}+x+6 y-12=0$.
12. (a) Solve the equation

$$
\begin{gather*}
4 \operatorname{Sin}^{2} \theta+4 \operatorname{Cos} \theta=5 \\
\text { for } O \leq \theta \leq 360^{\circ} . \tag{3marks}
\end{gather*}
$$

(b) In a triangle $\mathrm{ABC} \angle \mathrm{A}=120^{\circ} \mathrm{BC}=20 \mathrm{~cm}$ and $\mathrm{AC}=8 \mathrm{~cm}$, find the value of angle B and Area of triangle $A B C$.
(c) XY and PZ are parallel chords of a circle 2 cm apart. If $\mathrm{PZ}=10 \mathrm{~cm}$ and $X Y=8 \mathrm{~cm}$, Find the radius of the circle.
[4 marks]
13. (a) From the top of a cliff 30 m high the angle of depression of a boat is 60°. How far away is the boat from the foot of the cliff?
[3 marks]
(b) Given $\tan \theta=6 / 8$ state $\operatorname{Cos} \theta$ and $\operatorname{Sin} \theta$ without using tables.
[3 marks]
(c) A has co-ordinates (3,4) B has co-ordinates (x,5). If $|A B|=5 \sqrt{2}$, Find the possible values of x .
[4 marks]
14. (a) An Electric pylon is 30 m high. A point S on top of the pylon is vertically above another point R on the ground. Points A and B are on the same horizontal ground as R. Point A is due south of the pylon and the angle of elevation of S from A is 26°. Point B is due west of the pylon and angle of elevation of S from B is 32°.

Calculate

(i) distance from A to B
(ii) Bearing of B from A
[7 marks]
(b) Given that vector a $\tilde{a}=\binom{2}{-6}, b=\binom{-4}{5}$ and $\tilde{c}=\binom{-6}{3}$

Find $|a+2 b-3 c|$
[3 marks]
15. (a) Prove that the following points are collinear
A (1 2) B (3 5) C (7 11).
[2 marks]
(b) State the value of angles indicated in the figure below; Given that $\angle \mathrm{ABC}=130^{\circ}$ and O is the centre of the circle and $\overline{A B}=\overline{B C}$.

