

MERU UNIVERSITY OF SCIENCE AND TECHNOLOGY

P.O. Box 972-60200 – Meru-Kenya. Tel: 020-2069349, 061-2309217. 064-30320 Cell phone: +254 712524293, +254 789151411 Fax: 064-30321 Website: www.must.ac.ke Email: info@must.ac.ke

University Examinations 2013/2014

FIRST YEAR, FIRST SEMESTER EXAMINATIONS FOR MASTER OF SCIENCE IN STATISTICS

STA 3113: DECISION THEORY

DATE: APRIL 2014

TIME: 3 HOURS

INSTRUCTIONS: Answer question **one** and any other **two** questions.

QUESTION ONE - (30 MARKS)

- (a) Define the following terminologies as used in Bayesian statistics (Hint: Use formula where applicable).
 - (i) Prior distribution
 - (ii) Posterior distribution
 - (iii) Risk function
 - (iv) Bayes action

(b) Consider an experiment involving two bags. One bag contains 7 black and 2 white balls. The second bag contains 6 black and 5 white balls. By flipping a coin, we pick a ball from the first bag if head is obtained and second bag otherwise. What is the conditional probability of picking a ball from bag 1 given that the ball selected is white?

(4 Marks)

(4 Marks)

- (c) Consider a random sample $X = (x_1, x_2, ..., x_n)$ where x is Bernouli distributed with probability of success p. Obtain
 - (i) The likelihood function for the random sample. (2 Marks)
 - (ii) The posterior distribution of p if the prior density of p is assumed to be Beta(\propto, β) (6 Marks)

- (iii) Express the posterior mean as a sum of the prior mean and the MLE(p).
- (2 Marks) (iv) Is the Beta prior applied on a Bernouli likelihood a conjugate prior?
- (d) Let $X = (x_1, x_2, ..., x_n)$ be a random sample from a Binomial distribution (K, θ) . Suppose the prior distribution of θ is $\pi(\theta) \sim Beta(\propto, \beta)$. Let the loss function for Bayesian decision making be $L(\theta, a) = a^2 - 2\theta a + a^2$. Determine
 - (i) The prior density of θ (5 Marks)
 - (ii) The Bayes action for the loss function defined above. (Hint: Obtain the Posterior mean). (5 Marks)

QUESTION TWO – (20 MARKS)

Consider a random sample $X = (x_1, x_2, ..., x_n)$ from a normal population with mean μ and unknown precision τ . $X \sim N(\mu, \tau)$.

(a) Suppose τ is assumed to have a Gamma (\propto, β) prior distribution. Show that τ has a Posterior Gamma density function given by the hyper parameters

$$\alpha^* = \frac{n_2}{2} + \alpha$$
(12 Marks)
$$\beta^* = \left[\frac{1}{2}\sum_{i=1}^n (x_i - \mu)^2 + \frac{1}{\beta}\right]^{-1}$$

(b) Obtain the posterior mean under the quadratic loss function. (8 Marks)

QUESTION THREE – (20 MARKS)

- (a) Consider a random sample $X = (x_1, x_2, ..., x_n)$ from a Poisson (λ) distribution. Assume $\lambda \sim Gamma$ (\propto, β). Using the los function $L(\hat{\lambda}, \lambda) = (\lambda - \hat{\lambda})^2$, show that the Posterior mean is given by $\hat{\lambda} = \frac{n}{n+\beta} \bar{x} + \frac{\beta}{n+\beta} \cdot \frac{\alpha}{\beta}$ (10 Marks)
- (b) (i) Consider a random sample $X = (x_1, x_2, ..., x_n)$ from a Normal $(\theta, 1)$ distribution. Suppose the prior density of θ is $p(\theta) = 1$; $-\infty < \theta < \infty$ show that the $(1-\infty)100\%$ HPD credible set for θ is given by $\overline{x} \pm z_{\alpha/2} \sqrt{\frac{1}{n}}$ (7 Marks)

(2 Marks)

(ii) Hence for a random sample size n = 25 and $\sum_{i=1}^{25} x_i = 1250$, obtain the 95% HPD credible set for the parameter θ . (3 Marks)

QUESTION FOUR - (20 MARKS)

(a) <i>X</i> ~ <i>N</i>	(θ, σ^2)	
(i)	Show that the the $MLE(\theta) = \bar{x}$	(3 Marks)
(ii)	Is $\hat{\theta} = MLE(\theta)$ unbiased for θ ?	(2 Marks)
(iii)	Obtain the Fisher's information $I(\theta)$	(2 Marks)
(iv)	Obtainer the Crammer Rao Lower bound for the variance of the estimator of θ	
		(2 Marks)
(v)	(v) Determine the Jeffrey's prior for θ and comment on the suitability of such a	
	density.	(3 Marks)
(b) Use the Jeffrey's prior obtained above to obtain the Posterior density for θ .		
		(8 Marks)

QUESTION FIVE – (20 MARKS)

(a) Let $X \sim Poisson(\lambda)$. Choose an improper prior of the form.

 $p(\lambda) = C; -\infty < \lambda < \infty$

- (i) Show that the Posterior mode is equal to the maximum likelihood estimate for λ .
- (ii) Obtain the Posterior mode. (10 Marks)
- (b) For X~ Poisson (λ), obtain the Jeffrey's prior for λ and use it to obtain the Posterior mean.
 (10 Marks)