MERU UNIVERSITY OF SCIENCE AND TECHNOLOGY
P.O. Box 972-60200 - Meru-Kenya.

Tel: 020-2069349, 061-2309217.064-30320 Cell phone: +254 712524293, +254 789151411
Fax: 064-30321
Website: www.must.ac.ke Email: info@must.ac.ke
University Examinations 2013/2014

FIRST YEAR, FIRST SEMESTER EXAMINATIONS FOR MASTER OF SCIENCE IN STATISTICS

STA 3113: DECISION THEORY

DATE: APRIL 2014
TIME: 3 HOURS

INSTRUCTIONS: Answer question one and any other two questions.

QUESTION ONE - (30 MARKS)
(a) Define the following terminologies as used in Bayesian statistics (Hint: Use formula where applicable).
(i) Prior distribution
(ii) Posterior distribution
(iii) Risk function
(iv) Bayes action
(4 Marks)
(b) Consider an experiment involving two bags. One bag contains 7 black and 2 white balls. The second bag contains 6 black and 5 white balls. By flipping a coin, we pick a ball from the first bag if head is obtained and second bag otherwise. What is the conditional probability of picking a ball from bag 1 given that the ball selected is white?
(4 Marks)
(c) Consider a random sample $X=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ where x is Bernouli distributed with probability of success p. Obtain
(i) The likelihood function for the random sample.
(2 Marks)
(ii) The posterior distribution of p if the prior density of p is assumed to be $\operatorname{Beta}(\alpha, \beta)$
(iii) Express the posterior mean as a sum of the prior mean and the $\operatorname{MLE}(p)$.
(2 Marks)
(iv) Is the Beta prior applied on a Bernouli likelihood a conjugate prior?
(2 Marks)
(d) Let $X=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a random sample from a Binomial distribution (K, θ). Suppose the prior distribution of θ is $\pi(\theta) \sim \operatorname{Beta}(\alpha, \beta)$. Let the loss function for Bayesian decision making be $L(\theta, a)=a^{2}-2 \theta a+a^{2}$. Determine
(i) The prior density of θ
(5 Marks)
(ii) The Bayes action for the loss function defined above. (Hint: Obtain the Posterior mean).
(5 Marks)

QUESTION TWO - (20 MARKS)

Consider a random sample $X=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ from a normal population with mean μ and unknown precision τ.
$X \sim N(\mu, \tau)$.
(a) Suppose τ is assumed to have a Gamma (α, β) prior distribution. Show that τ has a Posterior Gamma density function given by the hyper parameters
$\alpha^{*}=n / 2+\alpha$
$\beta^{*}=\left[\frac{1}{2} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}+\frac{1}{\beta}\right]^{-1}$
(b) Obtain the posterior mean under the quadratic loss function.

QUESTION THREE - (20 MARKS)

(a) Consider a random sample $X=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ from a Poisson (λ) distribution. Assume $\lambda \sim \operatorname{Gamma}(\alpha, \beta)$. Using the los function $L(\hat{\lambda}, \lambda)=(\lambda-\hat{\lambda})^{2}$, show that the Posterior mean is given by $\hat{\lambda}=\frac{n}{n+\beta} \bar{x}+\frac{\beta}{n+\beta} \bullet \frac{\alpha}{\beta}$
(b) (i) Consider a random sample $X=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ from a $\operatorname{Normal}(\theta, 1)$ distribution. Suppose the prior density of θ is $p(\theta)=1 ;-\infty<\theta<\infty$ show that the $(1-\infty) 100 \%$ HPD credible set for θ is given by $\bar{x} \pm z_{\alpha / 2} \sqrt{\frac{1}{n}}$
(ii) Hence for a random sample size $n=25$ and $\sum_{i=1}^{25} x_{i}=1250$, obtain the 95% HPD credible set for the parameter θ.

QUESTION FOUR - (20 MARKS)

(a) $X \sim N\left(\theta, \sigma^{2}\right)$
(i) Show that the the $\operatorname{MLE}(\theta)=\bar{x}$
(3 Marks)
(ii) Is $\hat{\theta}=\operatorname{MLE}(\theta)$ unbiased for θ ?
(iii) Obtain the Fisher's information $I(\theta)$
(iv) Obtainer the Crammer Rao Lower bound for the variance of the estimator of θ
(v) Determine the Jeffrey's prior for θ and comment on the suitability of such a prior density.
(3 Marks)
(b) Use the Jeffrey's prior obtained above to obtain the Posterior density for θ.
(8 Marks)
QUESTION FIVE - (20 MARKS)
(a) Let $X \sim$ Poisson (λ). Choose an improper prior of the form. $p(\lambda)=C ;-\infty<\lambda<\infty$
(i) Show that the Posterior mode is equal to the maximum likelihood estimate for λ.
(ii) Obtain the Posterior mode.
(10 Marks)
(b) For $X \sim$ Poisson (λ), obtain the Jeffrey's prior for λ and use it to obtain the Posterior mean.

