

MERU UNIVERSITY OF SCIENCE AND TECHNOLOGY

P.O. Box 972-60200 – Meru-Kenya. Tel: 020-2069349, 061-2309217. 064-30320 Cell phone: +254 712524293, +254 789151411 Fax: 064-30321 Website: www.must.ac.ke Email: info@must.ac.ke

University Examinations 2013/2014

FIRSTYEAR, FIRST SEMESTER EXAMINATIONS FOR MASTER OF SCIENCE IN STATISTICS

STA 3104: DESIGN AND ANALYSIS OF EXPERIMENTS

DATE: APRIL 2014

TIME: 3 HOURS

INSTRUCTIONS: Answer question **one** and any other **two** questions.

QUESTION ONE – (30 MARKS)

- (a) Define the following terminologies (if possible, with illustration)
 - (i) Latin Square Design
 - (ii) Greaco-Latin Square Design
 - (iii) D-Optimality and A-Optimality of design

(6 Marks)

(b) The following data is not a perfect Latin Square design data

А	С	В	D
10	15	5	4
С	В	А	D
12	10	3	4
В	D	А	С
20	10	5	10
D	A	В	С
10	4	12	25

- (i) Construct a perfect Latin Square design. (2 Marks)
- (ii) Compute the following sum of squares for the Latin square obtained in (i).
 SS(treatment), SS(rows), SS(columns) (8 Marks)

(c) (i) Complete the ANOVA Table below for a completely Randomized Block Design (CRBD).

Source of	df	SS	MSS	F
variation				
Treatments	3	21.7	7.23	-
Blocks	2	32.2	-	-
Errors	-	-	-	
total	11	57.7		

(6 Marks)

(ii) Test at ∝= 0.05 if the treatments and blocks are statistically significant.
 (4 Marks)
 (iii) Compute the relative efficiency of the RCBD above over a CRD for the same experiment. What is the gain in efficiency?
 (4 Marks)

QUESTION TWO – (20 MARKS)

(a) Consider the Randomized Complete Bloc Design (RCBD). For a fixed effects model, with V-treatments and B-blocks, and $\sum_{i=1}^{v} t_i = \sum_{j=1}^{b} B_j = 0$ where t_i = treatment effects and B_j = block effects, show that

(i)
$$E(MSS(treatments)) = \sigma_e^2 + \frac{b}{v-1} \sum_{i=1}^{v} t_i^2$$
 (5 Marks)

(ii)
$$E(MSS(Blocks)) = \sigma_e^2 + \frac{v}{b-1} \sum_{j=1}^b b_j^2$$
 (5 Marks)

- (iii)Under $H_0:t_i = 0$; $B_j = 0$ comment if MSS(t) and MSS(B) are unbiased for the error variance. (2 Marks)
- (b) The data below is an experiment in which four treatments are laid out in 3 blocks.

	Treatments				
		1	2	3	4
Block	1	6	8	7	11
	2	5	6	6	9
	3	9	9	11	12

At $\propto = 0.01$, test the hypothesis $H_0: t_1 = t_2 = t_3 = t_4 = 0$; $B_1 = B_2 = B_3 = 0$ Versus $H_1:$ at least one treatment or block effect differs from zero. (8 Marks)

QUESTION THREE – (20 MARKS)

Four fertilizers are applied to a farm, each with five replications. The following yield of maize in bags is recorded.

А	55	49	42	21	52
В	61	112	30	89	63
С	42	97	81	95	92
D	169	137	169	85	154

- (a) Identify the type of design used in this experiment. (2 Marks)
- (b) Derive the formulae for computation of sums of squares necessary for the ANOVA analysis. Hint: split the formula for total sums of squares. (3 Marks)
- (c) At $\alpha = 0.01$, test the hypothesis $H_0: t_A = t_B = t_C = t_D = 0$ versus $H_1:$ at least one effect differs from zero. (7 Marks)
- (d) For any two pairs of means and a balance design, we reject

$$H_{0}: t_{i} = t_{i}^{\prime} for H_{i}: t_{i} \neq t_{i}^{\prime} \text{ if } \frac{\hat{t}_{i} - \hat{t}_{i}^{\prime}}{\hat{\sigma}_{e} \sqrt{\frac{1}{n_{i}} + \frac{1}{n_{i}^{\prime}}}} > t_{(\alpha/2, df = n-\nu)}$$

Based on this judgment, compare all the possible pairs of means. (7 Marks)

(e) Recommend one fertilizer to the farmers. (1 Mark)

QUESTION FOUR - (20 MARKS)

- (a) Suppose the Yij-th observation in the jth block receiving treatment i is missing, derive the formula for estimating the missing observation in a Randomized Complete Block Design. (i = 1, 2, ..., v; j = 1, 2, ..., b) (10 Marks)
- (b) Hence set up an ANOVA at $\propto = 0.05$ for the cow feeds data below.

	HERDS				
		1	2	3	4
COW FEDS	Α	19	-	23	26
	В	26	28	27	33
	С	20	29	22	26

Note that sums of squares due to treatment is over-estimated by a factor

$$p = \frac{\left(B_{J}^{\ \prime} + VT_{i}^{\ \prime} - G\right)^{2}}{V(V-1)(b-1)^{2}}$$
(10 Marks)