MERU UNIVERSITY OF SCIENCE AND TECHNOLOGY
P.O. Box 972-60200 - Meru-Kenya.

Tel: 020-2069349, 061-2309217.064-30320 Cell phone: +254 712524293, +254 789151411
Fax: 064-30321
Website: www.must.ac.ke Email: info@must.ac.ke
University Examinations 2013/2014

FIRST YEAR, FIRST SEMESTER EXAMINATIONS FOR DEGREE OF MASTER OF SCIENCE IN STATISTICS

STA 3101: MULTIVARIATE ANALYSIS

INSTRUCTIONS: Answer question one and any other two questions.
QUESTION ONE - (30 MARKS)
(a) Let y be a $p \times 1$ random vector and x be also a $p \times 1$ matrix of constants. Show that $\operatorname{Cov}(X, Y)=\Sigma_{X, Y}$ Let A be a $l \times p$ matrix of constants at B be a $p \times q$ matrix of constants, show that $\operatorname{Cov}(A Y, B X)=A \sum_{Y X} B^{\prime}$ (8 Marks)
(b)
(i) Define the Hotteling $T^{2}-$ Statistics
(ii) Show that the statistic T^{2} is invariant of non-singular linear transformation.
(c) Let x be a $p \times 1$ random vector with $V(x)=\sum$ and $E(x)=\mu$. Show that
(i) The matrix Σ is symmetric positive definite if the component random variables x are linearly independent.
(8 Marks)
(ii) For a quadratic form

$$
\begin{aligned}
& Q=(x)=x^{\prime} A X_{-} \\
& E[Q(X)]=\operatorname{trace}\left(A \sum\right)+\mu^{\prime} A \mu
\end{aligned}
$$

If A is symmetric positive definite matrix.

QUESTION TWO - (20 MARKS)

(a) Show that $\underset{-}{x}$ is $N_{P}(\mu, \Sigma)$ iff $a^{\prime} x$ is $N_{1}\left(a^{\prime} \mu, a_{-}^{\prime} \sum \underset{-}{a}\right)$
(b) (i) Briefly explain the importance of principal component analysis statistics.
(4 Marks)
(iii) Let $\underset{-}{x_{1}} \sim N\left(\underset{-}{\mu_{1}}, \Sigma\right)$ and $x_{-} \sim N\left(\underset{-}{\left.\mu_{2}, \Sigma\right)}\right.$ denote random vectors with corresponding multivariate normal distribution. Assume x_{1} and x_{2} are independents. Assuming Σ is unknown consider testing

$$
H_{0}=\mu_{1}=\mu_{2}
$$

$$
\begin{gathered}
v s \\
H_{1}=\mu_{-1} \neq \mu_{2}
\end{gathered} . \text { Determine a test for the hypothesis basing on the principal }
$$

$$
\text { component of } x_{1} \text { and } x_{2}
$$

QUESTION THREE - (20 MARKS)

(a) $f(x)=\frac{1}{(2 \pi)^{\frac{p}{2}}|\Sigma|^{\frac{1}{2}}} \exp -\frac{1}{2}(x-\mu)^{1} \Sigma^{-1}(x-\mu)$ where x is $p \times 1$ vector and Σ is a positive definite matrix. Show that
(i) $f(x) \geq 0$
(ii) $\int_{-\infty}^{\infty} f(x) d x=1$

Where the integral denotes the p definite multiple integrals each over the interval $(-\infty, \infty)$.
(8 Marks)
(b) Let y be distributed as $N_{P}(\mu, \Sigma)$. Show that the moment generating function of y is

$$
\begin{equation*}
\mathrm{M}_{y}(t)=\exp t_{-}^{\prime} \mu+t_{-}^{\prime} \frac{\sum}{2} t, \text { where } \sum=\operatorname{Var}(\underset{-}{y}) \tag{6Marks}
\end{equation*}
$$

(c) Using part (b) or otherwise, show that the moment generating function of $\underset{-}{Z}=y-\underset{-}{\mathrm{M}}$ is $\mathrm{M}_{2}(t)=\exp t_{-}^{\prime} \frac{\sum}{2} t$.

QUESTION FOUR -(20MARKS)

(a) Show that if y is $N_{P}(\mu, \Sigma)$ then an $r \times 1$ subvector of y has an r-variate normal distribution with the same means, variance and covariances as in the original p-variate normal distribution.
(b) Using part (a) or otherwise, show any individual variable y_{i} in y is distributed as

$$
\begin{equation*}
N_{1}\left(\mu_{i}, \delta_{i i}\right) \text { where } \mu_{i}=E\left(y_{i}\right) \text { and } \delta_{i i}=\operatorname{var}\left(y_{i}\right) \tag{6Marks}
\end{equation*}
$$

(c) Show that if y and x are jointly multivariate normal with $\sum_{i x} \neq 0$, then the conditional distribution of $\underset{-}{y}$ given $\underset{-}{x}, f\left(\left.\underset{-}{y}\right|_{-} ^{x}\right)$ is multivariate normal with mean and covariance matrix $E\left(\underset{-}{y \mid} \left\lvert\, \begin{array}{l}x \\ -\end{array}\right.\right)=\mu y+\Sigma_{y x} \Sigma_{x x}^{-1}\left(\begin{array}{ll}x-\mu & x) \\ -y_{-} & \end{array}\right.$

$$
\operatorname{var}(\underset{-}{y} \mid \underset{-}{\mid})=\Sigma_{y y}-\Sigma_{y x} \Sigma_{x x}^{-1} \Sigma_{y x}
$$

respectively.

QUESTION FIVE - (20 MARKS)

Suppose that the random vector y is distributed as $N_{4}[\mu, \Sigma]$ where $\mu=\left(\begin{array}{ll}1 & 2\end{array} 3-2\right)^{\prime}$ and

$$
\sum=\left[\begin{array}{cccc}
4 & 2 & -1 & 2 \\
2 & 6 & 3 & -2 \\
-1 & 3 & 5 & -4 \\
2 & -2 & -4 & 4
\end{array}\right]
$$

(a) Find the distribution of
(i) $\quad\left(y_{1} y_{2}\right)^{\prime}$
(ii) y_{2}
(iii) $z=y_{1}+2 y_{2}-y_{3}+3 y_{4}$
(iv) $\underline{z}=\left(z_{1}, z_{2}\right)^{\prime}$, where $\begin{aligned} & z_{1}=y_{1}+y_{2}-y_{3}-y_{4} \text { and } \\ & z_{2}=-3 y_{1}+y_{2}+2 y_{3}-2 y_{4}\end{aligned}$
(v) $\quad\left(y_{1}, y_{2}\right)^{\prime}$ given y_{3}, y_{4}
(b) Find
(i) $\operatorname{Corr}\left(y_{1}, y_{3}\right)$
(ii) $\operatorname{Corr}\left(y_{1} y_{3} \mid y_{3} y_{4}\right)$

