University Examinations 2011/2012

FIRST YEAR, FIRST SEMESTER EXAMINATION FOR THE DEGREE OF MASTER OF SCIENCE IN APPLIED STATISTICS

STA 3101: MULTIVARIATE ANALYSIS

TIME: 3 HOURS
INSTRUCTIONS: Answer Question one and any other two questions

QUESTION ONE (30 MARKS)

a) Outline the characteristics of multivariate cumulative distribution functions,(5 Marks)
b) Let $\underline{X}=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)^{\prime}$ be a multivariate normally distributed random vector with the mean vector μ and variance covariance matrix \sum. Consider the partition
$\underline{X}=\left(\underline{X}_{1}, \underline{X}_{2}\right)^{\prime}$ on random vector; where $\underline{X}_{1}=\left(x_{1}, x_{2}\right)^{\prime}$ and $\underline{X}_{2}=\left(x_{3}, x_{4}\right)^{\prime}$. Find the conditional expectation $E\left(\left(\underline{X}_{1} \mid \underline{X}_{2}\right)\right.$.
(4 Marks)
c) Show that a p-dimensional random vector \underline{X} has a p-variate normal distribution if and only if $y=\underline{a^{\prime}} \underline{X} \sim N\left(\underline{a^{\prime}} \underline{\mu}, \underline{a^{\prime}} \sum \underline{a}\right)$ where $\underline{a^{\prime}} \neq 0$.
(4 Marks)
d) Discuss some of the methods used to decide on which principal component to be retained for analysis.
(7 Marks)
e) Describe the relationship between the Hotteling T2 distribution and the F distribution.
(5 Marks)
f) With $A_{q \times p}$ being a matrix of consonants and $b_{q \times 1}$ vector of constants, find an expression of the variance of $A \underline{x}+\underline{b}$.

QUESTION TWO (20 MARKS)

a) Define the density function of a p-dimensional random vector \underline{X} which is normally distributed with mean $\underline{\mu}$ and variance \sum.
b) Derive an expression for the density when $p=2$.
c) Let $\underline{y}=\sum^{-\frac{1}{2}}(\underline{X}-\underline{\mu})$. Find an expression for the distribution of \underline{y}.

QUESTION THREE (20 MARKS)

a) Let $\underline{X}_{1}, \underline{X}_{2}, \ldots, \underline{X}_{n}$ be p-variate random vectors from a distribution with mean $\underline{\mu}$ and variance \sum. Find the unbiased estimators of the sample mean vector and variance.
(9 Marks)
b) Let $X_{n \times p}$ be a data matrix from $N_{p}\left(0, \sum\right)$ and $V=X^{\prime} X=\sum_{i=1}^{P} \underline{X}_{i} \underline{X}_{i}$.
i. Find an expression for the distribution of V .
ii. Derive the characteristic function of V .
(11 Marks)

QUESTION FOUR (20 MARKS)

Describe mathematically, how the principal components are derived.
(20 Marks)

