

University Examinations 2011/2012

FIRST YEAR, FIRST SEMESTER EXAMINATION FOR THE DEGREE OF MASTER OF SCIENCE IN APPLIED STATISTICS

STA 3101: MULTIVARIATE ANALYSIS

DATE: JANUARY 2012

TIME: 3 HOURS

INSTRUCTIONS: Answer Question one and any other two questions

QUESTION ONE (30 MARKS)

- a) Outline the characteristics of multivariate cumulative distribution functions, (5 Marks)
- b) Let $\underline{X} = (x_1, x_2, x_3, x_4)'$ be a multivariate normally distributed random vector with the mean vector $\underline{\mu}$ and variance covariance matrix $\underline{\Sigma}$. Consider the partition $\underline{X} = (\underline{X}_1, \underline{X}_2)'$ on random vector; where $\underline{X}_1 = (x_1, x_2)'$ and $\underline{X}_2 = (x_3, x_4)'$. Find the conditional expectation $E((\underline{X}_1 | \underline{X}_2))$. (4 Marks)
- c) Show that a p-dimensional random vector \underline{X} has a p-variate normal distribution if and only if $y = \underline{a'} \underline{X} \sim N(\underline{a'} \mu, \underline{a'} \sum \underline{a})$ where $\underline{a'} \neq 0$. (4 Marks)
- d) Discuss some of the methods used to decide on which principal component to be retained for analysis.
 (7 Marks)
- e) Describe the relationship between the Hotteling T2 distribution and the F distribution. (5 Marks)
- f) With $A_{q \times p}$ being a matrix of consonants and $b_{q \times 1}$ vector of constants, find an expression of the variance of Ax + b. (5 Marks)

QUESTION TWO (20 MARKS)

a)	Define the density function of a p-dimensional random vector \underline{X}	which is normally
	distributed with mean $\underline{\mu}$ and variance $\underline{\Sigma}$.	(2 Marks)
b)	Derive an expression for the density when $p = 2$.	(9 Marks)

c) Let $\underline{y} = \sum_{n=1}^{\infty} (\underline{X} - \underline{\mu})$. Find an expression for the distribution of \underline{y} . (9 Marks)

QUESTION THREE (20 MARKS)

a) Let $\underline{X}_1, \underline{X}_2, ..., \underline{X}_n$ be p-variate random vectors from a distribution with mean $\underline{\mu}$ and variance $\underline{\Sigma}$. Find the unbiased estimators of the sample mean vector and variance.

(9 Marks)

b) Let $X_{n \times p}$ be a data matrix from $N_p(0, \Sigma)$ and $V = X' X = \sum_{i=1}^p X_i X_i'_i$.

- i. Find an expression for the distribution of V.
- ii. Derive the characteristic function of V. (11 Marks)

QUESTION FOUR (20 MARKS)

Describe mathematically, how the principal components are derived.

(20 Marks)