

MERU UNIVERSITY OF SCIENCE AND TECHNOLOGY

P.O. Box 972-60200 – Meru-Kenya. Tel: 020-2069349, 061-2309217. 064-30320 Cell phone: +254 712524293, +254 789151411 Fax: 064-30321 Website: www.must.ac.ke Email: info@must.ac.ke

University Examinations 2013/2014

FIRST YEAR, FIRST SEMESTER EXAMINATIONS FOR MASTER OF SCIENCE IN APPLIED STATISTICS

STA 3107: NON PARAMETRIC REGRESSION

DATE: APRIL 2014

TIME: 3 HOURS

INSTRUCTIONS: Answer question **one** and any other **two** questions.

QUESTION ONE - (30 MARKS)

(a) Let $Y \in (0,1)$ denote the outcome of a coin toss with $\pi = p(y=1)$ and $1 - \pi = p(y=0)$.

Define log
$$it(\pi_i) = \beta_0 + \sum_{j=1}^p \beta_j x_{ij} = x_i^{\prime} \beta$$
.

(i) Show that the MLE of π is $\sum y_i/n$

(ii) Write down an algorithm to be used to estimate the parameters β_0, β_i .

(b) (i) What is an exponential family

(ii) Show that $y \sim Poisson(\theta)$ and $y \sim Binomial$ belongs to exponential family.

(c)

- (i) Define what is meant by a spline?
- (ii) Illustrate (i) by two examples.
- (iii)Solve the problem

 $\frac{\arg\min}{\beta} (Y - B\beta)^{\prime} (Y - B\beta) + \lambda \beta^{\prime} \Omega\beta, \text{ where B- represents a spline.}$

(iv)Show that splines are linear smoothers.

QUESTION TWO – (20 MARKS)

(a) Let
$$\hat{r}_u(x)$$
 be a linear smoother show that $\hat{\sigma}^2 = \frac{\sum_{i=1}^n (y_i - \hat{r}(x_i))^2}{n - 2r + \tilde{r}}$

(b) Given the data $(x_1, y_1), --(x_n, y_n)$. Explain how you will find a non parametric relationship between y's and x's

QUESTION THREE – (20 MARKS)

Suppose that $x' s \in [a, b]$ explain how you will obtain the relationship $\hat{y} = \hat{r}_u(x)$ using regressogram procedure

- (a) Obtain the bias of the estimate if[a, b] = [0,1]
- (b) Obtain the variance of the estimator if[a, b] = [0,1]
- (c) What is your conclusion in (a) and (b) above.

QUESTION FOUR - (20 MARKS)

- (a) What is a Kernel regression. Illustrate your explanation with examples.
- (b) To obtain a smoothing matrix one could minimize $Gcv(h) = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{y_i \hat{r}_u(x)}{1 \frac{r}{n}} \right)^2$ where r = tr(L) is the effective degree of freedom $G C V(h) \approx \left(1 + \frac{2r}{n}\right) \hat{\sigma}^2$
- (c) Give a polynomial $p_x(u;a) = a_0 + a_1(u-x) + a_1(u-x)^2 + \dots + \frac{ap}{p!}(u-x)^p$. Explain how you will obtain the estimate of $a = (a_0, \dots a_p)$

QUESTION FIVE - (20 MARKS)

- (a) Describe the local average procedure for non parametric method.
- (b) Show that a linear regression estimator is a special case of non parametric estimator.
- (c) Solve for $\frac{\arg\min}{\beta} (Y X\beta)^{\prime} (Y X\beta) + \lambda \beta^{\prime} I\beta$