

MERU UNIVERSITY OF SCIENCE AND TECHNOLOGY

P.O. Box 972-60200 – Meru-Kenya.

Tel: 020-2069349, 061-2309217. 064-30320 Cell phone: +254 712524293, +254 789151411

Fax: 064-30321

Website: www.must.ac.ke Email: info@mucst.ac.ke

University Examinations 2013/2014

FIRST YEAR, FIRST SEMESTER EXAMINATION FOR THE DEGREE OF MASTER OF SCIENCE IN APPLIED STATISTICS

STA 3100: PROBABILITY THEORY

DATE: DECEMBER 2013

TIME: 3HOURS

INSTRUCTIONS: Answer questions **one** and any other **two** questions

QUESTION ONE - (30 MARKS)

- a) Let $\{A_i\}$ be a sequence of sets with relative to $\{\Omega, A, p\}$
 - i. Define limit superior of $\{A_i\}$ and limit inferior of $\{A_i\}$.
 - ii. Show that limit superior and inferior and elements of A.
- b) Let $\{x_n\}$ be a sequence of random variable defined to the probability space $\{\Omega, A, p\}$ with converges to the random variable $X \in R$ with probability 1. If $g: \mathbb{R} \to \mathbb{R}$ is continuous, then show that the sequence $\{g(x_n)\} \to g(x)$ w.p.1
- c) i) Define the term simple random variable.
 - ii) If x is a random variable. Show that |X| is a random variable.
 - iii) $x_1 x_2$ is a random variable if both x_1 and x_2 are random variables.
 - iv) $x^2 + 2x + 1$ is a random variable.

QUESTION TWO (20 MARKS)

- a) What is a probability measure P?
- b) What is a probability space (Ω, A, p) ?
- c) Let $f: \mathbb{R} \to \mathbb{R}$ be a non-negative measurable function with $\int_{-\infty}^{\infty} f(x, dx = m, where \ 0 < m < \infty$ show that if E is a Borel set, define $P(E) = \frac{1}{m} \int_{E} f(x) dx$, then P is a probability measure on $(\mathbb{R}, \mathcal{B})$
- d) Let E be an event such that $P(E) \neq 0$. Show that the set function defined by P(A|E) = P(AnE)/P(E) for any set A is a probability measure.

QUESTION THREE (20 MARKS)

- a) If A_1 and A_2 are independent events relative to (Ω, A, p) . Show that A_1^C and A_2^C are also independent event.
- b) For each sequence $[A_n]$ defined relative to (Ω, A, p) . Show that $P_r {\binom{liminfA_n}{n}} \leq \frac{limit}{n} P(A_n) \leq \frac{limsupP(A_n)}{n} \leq P {\binom{limsupA_n}{n}}$
- c) Let E_1, E_2, \dots be a sequence of events $m(\Omega, A, p)$. Show that

$$P\left(\bigcup_{n=1}^{\infty} E_n\right) \leq \sum_{n=1}^{\infty} P(E_n)$$

QUESTION FOUR (20 MARKS)

a) Let (Ω, A) be a measurable space and let $p_1, p_2, ...$ be a sequence of probability measures define as t. prove that the function p* defined on A by

$$P^*(E) = \sum_{n=1}^{\infty} \frac{1}{2^n} P_n(E)$$
 is a probability measure on **A**.

- b) Let (Ω, A, p) be a probability space and let x be a random variable defined over R. Define a function P' over the set \mathcal{B} of borel sets of \mathbb{R} by $P'(\mathcal{B}) = P\{x^{-1}(B)\}B\in\mathcal{B}$. Show that the triple $(\mathbb{R}, \mathcal{B}, P')$ is a probability space
- c) Define the following terms
 - i. The sequence $\{x_n\} \rightarrow x$ uniformly on $A \in \mathbf{A}$ of (Ω, \mathbf{A}, P)
 - ii. $\{x_n\} \xrightarrow{p.a.e} x$ iii. $\{x_n\} \xrightarrow{p} x$

iv.
$$\{x_n\} \xrightarrow{w.p.1} x$$

QUESTION FIVE (20 MARKS)

a) Prove that

i.
$$\binom{\limsup A_n}{n} \cap \frac{\limsup B_n}{n} \supset \frac{\limsup A_n \cap B_n}{n}$$

ii. $\binom{\limsup A_n}{n} \cup \frac{\limsup B_n}{n} = \frac{\limsup A_n \cup B_n}{n}$

- b) If X is a random variable, show that
 - i. x + 2 is a random variable
 - ii. $x^2 + 3x + 1$ is a random variable
- c) Let $\{E_1, E_2, \dots E_n\}$ be a collection of mutually independent events
 - i. Show that the probability of the occurrence of atleast one of the events is given by

$$1 - \prod_{i=1}^n \left(1 - p(E_i)\right)$$

ii. Show that the probability of the occurrence of exactly one of the events say E_1 is given by

$$p(E_i) - \prod_{k=1}^n (1 - p(E_k))$$

 $k \neq i$