University Examinations 2011/2012

FIRST YEAR, FIRST SEMESTER EXAMINATION FOR THE DEGREE OF MASTER OF SCIENCE IN APPLIED STATISTICS

STA 3100: PROBABILITY THEORY

TIME: 3 HOURS
INSTRUCTIONS: Answer Question one and any other two questions

QUESTION ONE (30 MARKS)

a) Briefly explain the meaning of the following terms/phrases as used in probability and statistical theory.
i. Set
ii. Power set
iii. Class
iv. Field
v. Borel set
vi. $\quad \sigma$-field
vii. Function
viii. Random variable
ix. Monotone increasing
x. Monotone decreasing
(10 Marks)
b) Show that the total number of subsets contained in its power set is 2^{n} where n is the number of elements in the set.
c) Confirm that when given a class $\mathrm{Ai}, \mathrm{i}=1,2, \ldots \mathrm{n}$ of n sets, there exists a class $\mathrm{Bi}, \mathrm{i}=1,2, \ldots \mathrm{n}$ such that Bi's are disjoint and

$$
\begin{equation*}
\bigcup_{i=1}^{n} A i=\sum_{i=1}^{n} B i \tag{5Marks}
\end{equation*}
$$

d) Prove that a σ-field is a monotone field and vice versa.
e) Let U be the universal set and let $w \in U$.

Let X be an operation such that $\mathrm{X}(\omega)$ is the value associated with w . let the values of X belong to U^{\prime}. We say that X is a mapping that maps U into U^{\prime}.
i.e $X: U \rightarrow U^{\prime}$

If X maps U to U " where $U " \subset U^{\prime}$ then we say that; U is the domain of $X . U^{\prime}$ is the range of $X U$ " is the strict range of X.
Consider tossing a fair coin 3 times and use it to elaborate the above descriptions of Universal Set, Domain, Mapping and Range.

QUESTION TWO (20 MARKS)

a) Carefully explain the concept of Indicator Functions as used in Probability and Statistics. (5 Marks)
b) Confirm the following properties of Indicator functions
i. If $A \in B$ then $I_{A} \leq I_{B}$
ii. $I_{A}^{C}=1-I_{A}$
iii. $I_{(A B)}=I_{A} I_{B}$
(5 Marks)

QUESTION THREE (20 MARKS)

a) Prove that Inverse mappings preserves all set relations.
b) Show that any simple function X can be written as;
$X=\sum_{k=1}^{n} X_{K} I_{A K}$ where X_{k} 's are distinct numerical constants and $A_{1}, A_{2}, \ldots, A_{n}$ forms a partition of U, where $I_{A K}$ is an indicator function on sets A and B. (10 Marks)

QUESTION FOUR (20 MARKS)

a) Carefully define Vector Random Variable.
b) Distinguish the concepts of probability and Probability space as used in Probability and statistics.
c) Explain the distinguishing item in the classical concept and the Axiomatic concept of probability.
d) In a bag there are N_{1} white, N_{2} black and N_{3} blue balls. M balls are selected at random without replacement. Find the Laplace order of the experiment.
(7 Marks)

