

MERU UNIVERSITY OF SCIENCE AND TECHNOLOGY

P.O. Box 972-60200 – Meru-Kenya.

Tel: 020-2069349, 061-2309217. 064-30320 Cell phone: +254 712524293, +254 789151411

Fax: 064-30321

Website: www.must.ac.ke Email: info@mucst.ac.ke

University Examinations 2013/2014

FIRST YEAR, FIRST SEMESTER EXAMINATION FOR THE DEGREE OF MASTER OF SCIENCE IN APPLIED STATISTICS

STA 3114: SURVIVAL AND CLINICAL DATA ANALYSIS

DATE: DECEMBER 2013

Treatment 1 Treatment 2 **TIME: 3HOURS**

INSTRUCTIONS: Answer question **one** and any other **two** questions

-0.3189

0.0172

QUESTION ONE - (30 MARKS)

a)	i) Define censoring :ii) Suggest 3 possible		10	(2 Marks) (3 Marks)
	ii) Suggest 5 possion	c reasons for censorn	1g.	(5 Marks)
b)	Suppose the time T is	a random variable d	efined by the survival function	on
	$S(t) = e^{-\lambda t}; t > 0, \lambda$	> 0		
	i. Obtain the pro	(3 Marks)		
	ii. Find the cumu	(2 Marks)		
	iii. Find the Harz	(2 Marks)		
	iv. Find the cumu	lative Harzard funct	ion of T.	(2 Marks)
c)	Consider the data below	ow showing survival	times for 21 individuals. Th	e plus sign indicates
	censored time			
	6 ⁺ ,6,6,6,7,9 ⁺ ,10 ⁺ ,13,1	6,17 ⁺ ,19 ⁺ ,20 ⁺ ,22,23,	25 ⁺ ,32 ⁺ ,34 ⁺ ,35 ⁺ .	
	Obtain the Kaplan Me	(6 Marks)		
d)	Consider the output d	ata below obtained f	rom a Cox proportional Harz	ards model.
		Coefficients	Se(coefficients)	

i. Express the data in a Cox proportional Harzards model and interpret the parameters.

0.0669

0.0667

(6 Marks)

ii. Obtain the 95% confidence interval for the Harzard Ratio for both Treatment 1 and Treatment 2. (4 Marks)

QUESTION TWO (20 MARKS)

a) Suppose T is a discrete lifetime that comes from a Geometric distribution.

 $f(t) = \theta (1 - \theta)^t$; t = 0, 1, 2, ...

Obtain

- i.The survival function of T.(3 Marks)ii.The Hazard function of T.(2 Marks)iii.The cumulative Hazard function.(2 Marks)iv.For $\theta = 2$, plot both h(t) and H(t) versus time. Comment.(3 Marks)
- b) An electronic firm experiments with two types of light bulbs that they manufacture. The following data shows time in months obtained from the lifespan of the light bulbs.

	0					1		0		
Group A	1	2	3+	4	4+	7+	8	9	11	15+
Group B	1+	2	2	3	3	4	4	5+	6	7+

- i. Test if the hazard rate in the two groups differs at $\propto = 0.05$. use the Log rank test on $H_0: h_1(t) = h_2(t)$ versus $H_1: h_1(t) \neq h_2(t)$ (5 Marks)
- ii. Conduct a test of hypothesis on the hazard rates for the two groups based on the Wilcoxon test. Choose $\propto = 0.05$. Compare results here with those of the Log rank test above. (5 Marks)

QUESTION THREE (20 MARKS)

a) Let T be survival time defined by a survival function

 $S(t) = \frac{t}{1+\lambda^{\alpha}}; \ \lambda_1 \propto = constants$

- i. Obtain f(t), h(t) and H(t), i.e probability density, hazard and cumulative hazard functions respectively. (4 Marks)
- ii. Show that the pth percentile of the survival time is given by $t_p = (1-p)(1+\lambda^{\alpha}).$ (2 Marks)
- iii. Obtain the median survival time if $\lambda = \alpha = 0.5$. (2 Marks)
- b) The remission time in weeks for patients on drug treatment and on control treatment is recorded in weeks. The plus sign indicates censored survival time

Treatment	15	19 ⁺	21	22^{+}	30	35
Control	7	8	10+	11	17 ⁺	19

i. Obtain the Kaplan Meier estimate of the survival function for the two groups and plot them on the same axis. Compare the two groups. (6 Marks) ii. Conduct a Logrank test of hypothesis ($\propto = 0.05$) to compare the two groups. Is the drug effective? (6 Marks)

QUESTION FOUR (20 MARKS)

- a) Using the Delta method, prove that;
 "If a random variable Y~N(μ, σ²), then a function of Y given by g(Y) is approximately normal mean g(μ) and variance [g'(μ)]²σ²".
- b) The Kaplan Meier estimator of a function is given by

$$\hat{S}(t) = \prod_{t_{j < t}} \frac{r_j - d_j}{r_j}; r_j = risk \ set, d_j = number \ of \ deaths \ at \ t_j$$

If $\hat{P}_j \sim N\left(p_j, p_j \frac{(1 - p_j)}{r_j}, E\left(\hat{S}(t) = S(t)\right), \text{ show that}$
$$\operatorname{var}\left(\hat{S}(t_j)\right) = [S(t)]^2 \sum_{t_j \le t} \frac{d_j}{r_j(r_{j-d_j})}$$

QUESTION FIVE (20 MARKS)

Conduct a multivariate Log rank test of hypothesis to compare the survival in the three groups below. choose $\propto = 0.05$.

Group 1	20	21	23	24	24	26	26	27	28	30
Group 2	26	28	29	29	29	30	31	31	32	-
Group 3	31	32	34	35	36	38	38	39	-	-

(20 Marks)