

University Examinations 2011/2012

FIRST YEAR, FIRST SEMESTER EXAMINATION FOR THE DEGREE OF MASTER OF SCIENCE IN APPLIED STATISTICS

STA 3106: TIME SERIES ANALYSIS

DATE: JANUARY 2012

TIME: 3 HOURS

INSTRUCTIONS: Answer Question **one** and any other **two** questions

QUESTION ONE (30 MARKS)

- a) Explain clearly each of the following terms as used in time series analysis
 - i. A weekly stationary time series
 - ii. Stationarity in the strict sense
 - iii. White noise

	iv.	Random walk	
	v.	Autoregressive process	(5 Marks)
b)	Briefly	v explain three main objectives of time series analysis.	(3 Marks)
c)	Define	a moving average process.	(2 Marks)
d)	Find th	ne mean and variance of a MA (q) process.	(4 Marks)
e)	Consid	Consider an AR(2) process given by $X_t = X_{t-1} - \frac{1}{2}X_{t-2} + e_t$. Check whether this	
	proces	s is stationary and if so find its autocorrelation function (ACF).	(10Marks)

f) Define spectral density as used in time series and hence derive an expression for the spectral density of a MA(1) process.
(6 Marks)

QUESTION TWO (20 MARKS)

a) An observed time series is a mixed ARMA model of the form $X_t = \propto_1 X_{t-1} + \propto_2 X_{t-2} + \dots + \propto_p X_{t-p} + e_t + \beta_1 e_{t-1} + \beta_2 e_{t-2} + \dots + \beta_q e_{t-q}$. Using backwards shift operator B express the equation above in terms of $\phi_q(B)$ and $\theta_p(B)$ which are polynomials of order q and p respectively.

- (6 Marks)
- b) Find the Autocovariance function and the Autocorrelation function of AR(1) process converted to an infinite MA process. (14 Marks)

QUESTION THREE (20 MARKS)

- a) Suppose that we have data up to time n, \underline{x}_{1} , $n = (x_{1}, x_{2}, ..., x_{n})$ and we wish to predict x_{n+k} ($k \ge 1$). Show that the minimum error forecast of x_{n+k} ($k \ge 1$) is the conditional mean of x_{n+k} at time n, that is, $\hat{x}(n, k) = E(x_{n+k} | \underline{x}_{1}, n)$. (16 Marks)
- b) Given ARIMA (1,0,0) process as $X_t = \propto X_{t-1} + e_t$, find:
 - i. the optimal 2-steps ahead forecast
 - ii. the optimal 3-steps ahead forecast (4 Marks)

QUESTION FOUR (20 MARKS)

Consider the following special case of the linear growth model

 $X_t = \mu_t + n_t$ where $n_t =$ error, and $\mu_t = \mu_{t-1} + \beta_{t-1}$ with $\beta_t = \beta_{t-1} + \omega_t$.

 ω_t and n_t are independent normal with zero means and respective variances σ_{ω}^2 and σ_n^2 .

a) Show that the least squares estimator of the state vector at time t = 2 in terms of the observations X_1 and X_2 is $(\hat{\mu}, \hat{\beta}) = (x_2, x_2 - x_1)$ with variance covariance matrix

$$\rho_{2=\begin{bmatrix}\sigma_n^2 & \sigma_n^2\\\sigma_n^2 & 2\sigma_n^2 + \sigma_\omega^2\end{bmatrix}}$$
(12 Marks)

b) Derive the Kalman filter estimator of the state vector at t = 3 when X_3 becomes available and σ_{ω}^2 is equal to zero. (8 Marks)