

# **University Examinations 2012/2013**

# FIRST YEAR, SECOND SEMESTER EXAMINATIONS FOR THE DEGREE OF MASTER OF SCIENCE IN APPLIED MATHEMATICS

### SMA 3132: ANALYTICAL APPLIED MATHEMATICS 1

#### DATE: AUGUST 2012

**TIME: 3 HOURS** 

**INSTRUCTIONS:** Answer question one and any other two questions.

#### • The variables used have their usual meaning

## **QUESTION ONE – (30 MARKS)**

- a) State any three Dirichlet conditions necessary for a function to be expressed as a Fourier series. (3 Marks)
- b) Evaluate the integral  $\oint_c (x + 2y)dx + (y 2x)dy$  around the ellipse c defined by  $x = 4\cos\theta, y = 3\sin\theta$  for  $0 \le \theta < 2\pi$  and c is described in a clockwise direction. (4 Marks)
- c) By transforming from Cartesian  $x_1 = \{x, y, z\}$  to cylindrical  $\overline{x_i} = \{r, \theta, l\}$  coordinates, obtain the components of the metric tensor  $g_{ij}$  and its inverse $g^{ij}$  in cylindrical coordinates. (5 Marks)
- d) Evaluate the integral  $\int_0^{2\pi} \frac{d\theta}{2-\cos\theta}$ . (6 Marks)
- e) Use the Laplace transform method to solve the I.V.P y'' - 10y' + 9y = 5t, y(0) = -1, y'(0) = 2. (6 Marks)
- f) Verify that the functions  $f_1(z) = \sum_{n=0}^{\infty} \frac{z^n}{2^{n+1}}$  and  $f_2(z) = \sum_{n=1}^{\infty} \frac{(z-2i)^{n-1}}{(2-i)^n}$  are analytic continuations of each other hence sketch the common region. (6 Marks)

#### **QUESTION TWO (20 MARKS)**

- a) Identify the zeros and singularities of the function  $f_2 = \frac{2z^2 + 1}{z^2 + 1}$  (2 Marks)

# (10 Marks)

## **QUESTION THREE (20 MARKS)**

- a) Find a Laurent series expansion of  $f(z) = \frac{1}{(z+1)(z-3i)}$  about z = -1 in the punctured disc  $0 < |z+1| < \sqrt{10}$ . (9 Marks)
- b) Evaluate the integral  $\int_{-\infty}^{\infty} \frac{x^2}{(x^2+1)^2(x^2+2x+2)} dx$  (11 Marks)

#### **QUESTION FOUR (20 MARKS)**

- a) Calculate the residues of the function  $f(z) = \frac{z^2 2z}{(z+1)^2(z^2+4)}$  at each of its singularities hence (or otherwise) evaluate the integral  $f(z) = \oint_c \frac{z^2 - 2z}{(z+1)^2(z^2+4)} dz$  where c: |z| = 3. (9 Marks)
- b) Use the Laplace transform method to solve the equation  $2\frac{d^2y}{dx^2} + 3\frac{dy}{dx} 2y = te^{-2t}$ subject to y(0) = 0 y'(0) = -2. (11 Marks)