MERU UNIVERSITY COLLEGE

 OF SCIENCE \&x TECHNOLOGYP.O. Box 972-60200 Meru - Kenya. Tel: 020-2092048, 0202069349 Fax: 020-8027449

University Examinations 2012/2013
FIRST YEAR, SECOND SEMESTER EXAMINATIONS FOR THE DEGREE OF MASTER OF SCIENCE IN APPLIED MATHEMATICS

SMA 3132: ANALYTICAL APPLIED MATHEMATICS 1
DATE: AUGUST 2012
TIME: 3 HOURS
INSTRUCTIONS: Answer question one and any other two questions.

- The variables used have their usual meaning

QUESTION ONE - (30 MARKS)

a) State any three Dirichlet conditions necessary for a function to be expressed as a Fourier series. (3 Marks)
b) Evaluate the integral $\oint_{c}(x+2 y) d x+(y-2 x) d y$ around the ellipse c defined by $x=4 \cos \theta, y=3 \sin \theta$ for $0 \leq \theta<2 \pi$ and c is described in a clockwise direction. (4 Marks)
c) By transforming from Cartesian $x_{1}=\{x, y, z\}$ to cylindrical $\bar{x}_{i}=\{r, \theta, l\}$ coordinates, obtain the components of the metric tensor $g_{i j}$ and its inverse $g^{i j}$ in cylindrical coordinates.
d) Evaluate the integral $\int_{0}^{2 \pi} \frac{d \theta}{2-\cos \theta}$.
e) Use the Laplace transform method to solve the I.V.P
$y^{\prime \prime}-10 y^{\prime}+9 y=5 t, \quad y(0)=-1, y^{\prime}(0)=2$.
f) Verify that the functions $f_{1}(z)=\sum_{n=0}^{\infty} \frac{z^{n}}{2^{n+1}}$ and $f_{2}(z)=\sum_{n=1}^{\infty} \frac{(z-2 i)^{n-1}}{(2-i)^{n}}$ are analytic continuations of each other hence sketch the common region.

QUESTION TWO (20 MARKS)

a) Identify the zeros and singularities of the function $f_{2}=\frac{2 z^{2}+1}{z^{2}+1}$
b) Using the tensor identity $\varepsilon_{i j k} \varepsilon_{i p q}=\delta_{j p} \delta_{k q}-\delta_{j q} \delta_{k p}$ prove the vector identity

$$
\begin{equation*}
\vec{A} \times(\vec{B} \times \vec{C})=\vec{B}(\vec{A} \cdot \vec{C})-\vec{C}(\vec{A} \cdot \vec{B}) \tag{8Marks}
\end{equation*}
$$

c) Use the residue theorem (or otherwise) to evaluate the integral $\int_{0}^{2 \pi} \frac{\cos 3 \theta}{5-4 \cos \theta} d \theta$

QUESTION THREE (20 MARKS)

a) Find a Laurent series expansion of $f(z)=\frac{1}{(z+1)(z-3 i)}$ about $z=-1$ in the punctured disc $0<|z+1|<\sqrt{10}$.
b) Evaluate the integral $\int_{-\infty}^{\infty} \frac{x^{2}}{\left(x^{2}+1\right)^{2}\left(x^{2}+2 x+2\right.} d x$

QUESTION FOUR (20 MARKS)

a) Calculate the residues of the function $f(z)=\frac{z^{2}-2 z}{(z+1)^{2}\left(z^{2}+4\right)}$ at each of its singularities hence (or otherwise) evaluate the integral $f(z)=\oint_{c} \frac{z^{2}-2 z}{(z+1)^{2}\left(z^{2}+4\right)} d z$ where $c:|z|=3$.
(9 Marks)
b) Use the Laplace transform method to solve the equation $2 \frac{d^{2} y}{d x^{2}}+3 \frac{d y}{d x}-2 y=t e^{-2 t}$ subject to $y(0)=0 \quad y^{\prime}(0)=-2$.

