MERU UNIVERSITY OF SCIENCE AND TECHNOLOGY
P.O. Box 972-60200 - Meru-Kenya.

Tel: 020-2069349, 061-2309217. 064-30320 Cell phone: +254 712524293, +254 789151411
Fax: 064-30321
Website: www.must.ac.ke Email: info@mucst.ac.ke

## University Examinations 2012/2013

FIRST YEAR, FIRST/SECOND SEMESTER EXAMINATION FOR MASTER OF SCIENCE IN APPLIED MATHEMATICS

## SMA 3132: ANALYTICAL APPLIED MATHEMATICS I

DATE: APRIL 2013
TIME: 3HOURS
INSTRUCTIONS: Answer questions one and any other two questions

- The variables and symbols have their usual meaning.

QUESTION ONE - (30 MARKS)
a) Identify the zeros and singularities of the following complex functions hence give the order of the zeros and classify the singularities.
i. $\quad f(z)=\frac{(z-i)^{2}}{z+1}$
(3 Marks)
ii. $\quad f(z)=\sin \left(\frac{1}{z^{2}}\right)$.
b) Evaluate the integral $\int_{0}^{\pi} \frac{1}{5+3 \cos \theta} d \theta$. (6 Marks)
c) Identify the singularities of the function $f(z)=\frac{\sin z}{(z-i)(z+1)^{2}}$ hence calculate the residues at the poles.
d) Use tensor algebra to prove that $\vec{a} .(\vec{b} \times \vec{c})=\vec{b} .(\vec{c} \times \vec{a})=\vec{c} .(\vec{a} \times \vec{b})$. (4 Marks)
e) Solve the I.V.P $y^{\prime \prime}-10 y^{\prime}+9 y=5 x$ subject to $y(0)=-1, y^{\prime}(0)=2$ using the Laplace transform method.

## QUESTION TWO (20 MARKS)

a) By transforming from Cartesian $x_{i}=\{x, y, z\}$ to cylindrical $\bar{x}_{i}=\{r, \theta, l\}$ coordinates, obtain the components of the metric tensor $g_{i j}$ and the inverse $g^{i j}$ in cylindrical coordinates.
b) Show that for some real number $a>1$ then the integral $\int_{0}^{\pi} \frac{d \theta}{a+\cos \theta}=\frac{\pi}{\sqrt{a^{2}-1}}$.
(7 Marks)
c) State and prove the Cauchy's theorem.

## QUESTION THREE (20 MARKS)

a) Find the Laurent series expansion of $f(z)=\frac{1}{z^{2}+(1-3 i) z-3 i}$ about $z=3 i$ and state the disc of convergence.
b) Evaluate the integrals
i. $\quad \int_{-\infty}^{\infty} \frac{x^{2}+2}{x^{4}+13 x^{2}+36} d x$
ii. $\quad \oint_{c} \frac{2 z}{(z-2)(z+1)(z-i)} d z \quad c:|z|=3$

## QUESTION FOUR (20 MARKS)

a) Let $\emptyset$ be a scalar field while $\vec{u}$ and $\vec{v}$ are vector fields. Prove the following expression.
i. $\quad \vec{\nabla} \cdot(\varnothing \vec{u})=\vec{u} \cdot \vec{\nabla} \emptyset+\emptyset \vec{\nabla} \cdot \vec{u}$
(5 Marks)
ii. $\quad \vec{\nabla} \times(\vec{u} \times \vec{v})=(\vec{\nabla} \cdot \vec{v}) \vec{u}-(\vec{\nabla} \cdot \vec{u}) \vec{v}+(\vec{v} \cdot \vec{\nabla}) \vec{u}-(\vec{u} \cdot \vec{\nabla}) \vec{v}$
(7 Marks)
b) Use the Laplace transform method to solve the equation $\frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}+6 y=1+e^{-t}$ subject to $y(0)=0, y^{\prime}(0)=0$.

