University Examinations 2012／2013
FIRST YEAR，SECOND SEMESTER EXAMINATIONS FOR THE DEGREE OF MASTER OF SCIENCE IN APPLIED MATHEMATICS

SMA 3106：COMPLEX ANALYSIS

INSTRUCTIONS：Answer question one and any other two questions．
－The variables used have their usual meaning

QUESTION ONE－（30 MARKS）

a）Prove that a necessary condition for a complex function to be harmonic in a domain D is that it has to be analytic there．
b）Distinguish between a conformal and an isogonal mapping．
c）Formulate a bilinear transformation which maps the points i ，$-i$ and 1 of the z plane into 0,1 and ∞ of the w plane respectively．
d）Test if the function $4 z^{2}-3 z+2$ satisfies the Schwarz reflection principle．
（3 Marks）
e）Prove that the function $v(x, y)=e^{-x}(x \cos y+y \sin y)$ is harmonic hence find its conjugate function．
（7 Marks）
f）Show that if $\mathrm{f}(\mathrm{z})$ is analytic in the upper half plane of the z－plane and $z_{0}=x_{0}+i y_{0}$ is any point inside the upper half plane then $f\left(z_{0}\right)=\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{y_{0} f(x)}{\left(x-x_{0}\right)^{2}+y_{0}^{2}} d x \quad$（6Marks）

QUESTION TWO（20 MARKS）

a）Test analytically of $f(z)=\frac{3 z^{2}-2}{z}$ stating the region of analyticity．
b）Explain the concept of a Schwarz－christofel transformation．
c）Compute the product $\prod_{n=1}^{\infty}\left[\frac{n+1+(-1)^{n}}{n+1}\right]$
d) Prove that a necessary and sufficient condition for the product $\prod_{n=1}^{\infty}\left(1+\left|u_{n}\right|\right)$ to converge is that the series $\sum_{n=1}^{\infty}\left(u_{n}\right)<\infty$.

QUESTION THREE (20 MARKS)

a) Find the image of lines parallel to the imaginary axis of the z-plane under the transformation $f(z)=z^{2}$.
b) Find and plot the image of the region bounded by the straight lines $L_{1}: x=1, L_{2}: y=$ 2 and $L_{3}: y=x+2$ under the mapping $w=z^{2}-4 z+4$ hence test if this mapping is conformal at the vertex where the line L_{1} meets L_{2}.

QUESTION FOUR (20 MARKS)

a) Construct a linear fractional transformation mapping the points $z_{1}=1, z_{2}=i, z_{3}=0$ to $w_{1}=5+i, w_{2}=1-i, w_{3}=-i$
b) Given that $\mathrm{f}(\mathrm{z})$ is analytic inside and on a circle $c:|z|=R$ and $z=r e^{i \theta}$ is any point inside c , then
$u(r, \theta)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{R^{2}-r^{2}}{R^{2}+r^{2}-2 R r \cos (\theta-\varnothing)} u(R, \emptyset) d \varnothing$ and
$v(r, \theta)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{R^{2}-r^{2}}{R^{2}+r^{2}-2 R r \cos (\theta-\emptyset)} v(R, \varnothing) d \emptyset$
Where $u(r, \theta)$ and $v(r, \theta)$ are the real and imaginary parts of $\mathrm{f}(\mathrm{z})$ while $u(R, \emptyset)$ and $v(R, \emptyset)$ are the real and imaginary parts of $f\left(R e^{i \phi}\right)$

