University Examinations 2011/2012

FIRST YEAR, FIRST SEMESTER EXAMINATIONS FOR THE DEGREE OF MASTER OF SCIENCE IN APPLIED MATHEMATICS

SMA 3106: COMPLEX ANALYSIS I

INSTRUCTIONS: Answer question one and any other two questions.

QUESTION ONE - (30 MARKS)

(a) Express z^{k} as a logarithmic function hence simplify the expression $(-i)^{3 i}$
(b) Prove that the function $u(x, y)=e^{-x}(x \sin y-y \cos y)$ is harmonic hence find the conjugate function of u.
(c) Prove that for closed polygons whose interior angles are $a_{1}, a_{2}, \ldots a_{n}$ we have the sum

$$
\begin{equation*}
\left(\frac{a_{1}}{\pi}-1\right)+\left(\frac{a_{2}}{\pi}-1\right)+\cdots+\left(\frac{a_{n}}{\pi}-1\right)=-2 \tag{3Marks}
\end{equation*}
$$

(d) Calculate the residues of the function $f(z)=\frac{z^{2}-2 z}{(z+1)^{2}\left(z^{2}+4\right)}$ at each of its singularities hence (or otherwise) evaluate the integral $f(z)=\oint \frac{z^{2}-2 z}{(z+1)^{2}\left(z^{2}+4\right)} d z$ where $c:|z|=3$
(e) Show that a function $f(z)=z^{2}$ maps lines parallel to the real axis in the z plane to parabolas in the w plane. Sketch these parabolas.

QUESTION TWO - (20 MARKS)

(a) Show that the functions $f_{1}(z)=\sum_{n=0}^{\infty} \frac{(z+2 i)^{n}}{(1+2 i)^{n+1}}$ and $f_{2}(z)=\sum_{n=0}^{\infty} z^{n}$ are analytic continuations of each other hence sketch the common region.
(b) State and prove the Poisson's integral formula for a circle given as $f\left(r e^{i \theta}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{R^{2}-r^{2}}{R^{2}+r^{2}-2 R r \cos (\theta-\varnothing)} f\left(R e^{i \varnothing}\right) d \emptyset$ where the given variables have their usual meaning.

QUESTION THREE - (20 MARKS)

(a) Test if the function $f(z)=3 z^{2}+4-2 i$ satisfies the Schwarz reflection principle.
(3 Marks)
(b) Show that under an inversion points inside a circle in the Z-Plane are mapped to points outside a circle in the W-Plane.
(9 Marks)
(c) Find a Laurent series expansion of $f(z)=\frac{1}{(z+1)(z-3 i)}$ about $z=-1$ in the punctured disc $0<|z+1|<\sqrt{10}$

QUESTION FOUR - (20 MARKS)

(a) Define the following terms with respect to complex functions
(i) Isogonal
(ii) Meromorphic
(b) Prove that a necessary condition for a function to be harmonic in a region is that it is analytic in that region.
(c) Construct a linear fractional transformation mapping the points

$$
\begin{equation*}
z_{1}=1 \quad z_{2}=-i \text { and } z_{3}=0 \text { to } w_{1}=5+i \quad w_{2}=1-i \text { and } w_{3}=-i \tag{7Marks}
\end{equation*}
$$

