

# MERU UNIVERSITY OF SCIENCE AND TECHNOLOGY

P.O. Box 972-60200 – Meru-Kenya.

Tel: 020-2069349, 061-2309217. 064-30320 Cell phone: +254 712524293, +254 789151411

Fax: 064-30321

Website: www.must.ac.ke Email: info@mucst.ac.ke

# University Examinations 2013/2014

# FIRST YEAR, THIRD TRIMESTER EXAMINATION FOR MASTER OF SCIENCE IN APPLIED MATHEMATICS

# SMA 3140: FLUID MECHANICS III

# **DATE: DECEMBER 2013**

**TIME: 3HOURS** 

**INSTRUCTIONS:** Answer question **one** and any other **two** questions

#### • The variables used have their usual meaning

#### **QUESTION ONE - (30 MARKS)**

| a) | Distinguish between Magneto hydrodynamics and magnetogasdynamics.                                 |                                                                    | (2 Marks) |
|----|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------|
| b) | Define the following terms as used in MHD                                                         |                                                                    |           |
|    | i.                                                                                                | Normal shock.                                                      | (2 Marks) |
|    | ii.                                                                                               | Alfven's waves                                                     | (2 Marks) |
| c) | Discuss each of the following non-dimensional numbers                                             |                                                                    |           |
|    | i.                                                                                                | Magnetic mach number.                                              | (2 Marks) |
|    | ii.                                                                                               | Magnetic pressure number.                                          | (2 Marks) |
|    | iii.                                                                                              | Hartmann number.                                                   | (2 Marks) |
| d) | Discu                                                                                             | ss each of the Maxwell's equations in a conducting media.          | (6 Marks) |
| e) | State the general momentum equation of a MHD flow and show that this equation can reduce          |                                                                    |           |
|    | to the induction equation                                                                         |                                                                    |           |
|    | $\frac{\partial \vec{H}}{\partial t} = $                                                          | $= curl(\vec{q} \times \vec{H}) + \nu_H \nabla^2 \vec{H} $ (7 Mark |           |
| f) | An infinite insulated plate on the xz-plane is set impulsively into motion with velocity V in its |                                                                    |           |

f) An infinite insulated plate on the xz-plane is set impulsively into motion with velocity V in its own plane. A transverse uniform magnetic field of strength H<sub>o</sub> is applied. Give a mathematical model for this flow. (5 Marks)

#### **QUESTION TWO (20 MARKS)**

a) Express the following equation in non dimensional form by applying the relevant scaling variables and non - dimensional numbers. (6 Marks)

$$\frac{\partial u}{\partial t} = u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = -\frac{1}{\rho} \frac{\partial p}{\partial x} + v \left( \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) - \frac{\sigma}{\rho} \mu_e^2 H^2 u$$

b) Consider the boundary layer flow over a flat plate of a fluid of very small electrical conductivity in the presence of a constant transverse magnetic field of strength H<sub>o</sub>. The plate is situated along the x-axis. Show that the ponder motive force in the x and y directions is respectively  $Fe_x \cong \sigma u \mu_e^2 H_{\nu 0}^2$  and  $Fe_y \cong 0$ . (14 Marks)

#### **QUESTION THREE (20 MARKS)**

a) By considering an inviscid, perfectly conducting fluid with a constant density, prove the existence of transverse waves in a fluid. (18 Marks)
b) State the Alfven's theorem. (2 Marks)

### **QUESTION FOUR (20 MARKS)**

A uniform flow of a compressible fluid along the x-axis experiences a normal shock along the y-axis. A magnetic field is applied in the y-axis direction. Given that  $\rho_1, u_1, p_1, T_1, H_1$  and  $\rho_2, u_2, p_2, T_2, H_2$  are respectively the density, velocity, pressure, temperature an magnetic field on the two sides of the shock, show that

a) 
$$\frac{\rho_2}{\rho_1} = \frac{u_1}{u_2} = \frac{H_2}{H_1}$$
 (6 Marks)  
b)  $\frac{p_2}{p_1} = y - N^2 \left(1 - \frac{1}{x_0}\right) - Q^2 (x_0^2 - 1)$   
where  $x_0 = \frac{\gamma + 1}{\gamma - 1}, N^2 = \gamma M_1^2$  and  $Q = \frac{1}{2} \mu_e \frac{H_1^2}{p_1}$ .  
(14 Marks)