MERU UNIVERSITY OF SCIENCE AND TECHNOLOGY
P.O. Box 972-60200 - Meru-Kenya.

Tel: 020-2069349, 061-2309217.064-30320 Cell phone: +254 712524293, +254 789151411
Fax: 064-30321
Website: www.must.ac.ke Email: info@must.ac.ke
University Examinations 2013/2014

FIRSTYEAR, FIRST SEMESTER EXAMINATIONS FOR DEGREE OF MASTER OF SCIENCE IN APPLIED MATHEMATICS

SMA 3136: NUMERICAL ANALYSIS I

INSTRUCTIONS: Answer question one and any other two questions.

QUESTION ONE - (30 MARKS)

(a) Given a collection of 2 m data points $\left\{x_{i}, y_{i}\right\}_{i=0}^{2 m-1}$
(i) Assuming that the data points are within the interval $[-\pi, \pi]$ where $x_{0}=-\pi$ and

$$
\begin{equation*}
x_{2 m}=\pi, \text { show that } x_{i}=-\pi+\left(\frac{i}{m}\right) \pi \tag{4Marks}
\end{equation*}
$$

(ii) The determination of constants in the summation

$$
s_{n}(x)=\frac{a_{0}}{2}+a_{n} \cos n x+\sum_{k=1}^{n-1}\left[a_{k} \cos k x+b_{k} \sin k x\right] \text { is enabled by orthogonality }
$$

property of the functions involved. Show that $b_{k}=\frac{1}{m} \sum_{i=0}^{2 m-1} y_{i} \sin k x_{i}$ for

$$
\begin{equation*}
k=1,2, \ldots, n-1 \tag{6Marks}
\end{equation*}
$$

(b) In rational approximations of functions, state the two reasons that gives the Pade's method a computational advantage over the Chebyshev's method. Also state the improvements that can be made to the Chebyshev's method to make it better.
(4 Marks)
(c) State that $f(x) \in C[a, b]$ obtain the expression for the linear normal equations that have to be solved to get $P_{n}(x)$, the least squares approximating polynomial for $f(x)$.
(d) State the Gerschgorin's theorem.
(e) Use the theorem in (d) above to determine bounds of the eigenvalues of the matrix

$$
\left[\begin{array}{cccc}
3 & -2 & 0 & 1 \tag{6Marks}\\
-1 & 3 & 1 & 0 \\
0 & 1 & 9 & 2 \\
1 & 1 & 2 & 9
\end{array}\right]
$$

QUESTION TWO - (20 MARKS)

(a) Given that $T_{n}(x)$ is a Chebyshev polynomial of degree $n \geq 1$
(i) Prove that $\int_{-1}^{1} \frac{T_{m}(x) T_{n}(x)}{\sqrt{1-x^{2}}} d x=0$ when $m \neq n$
(3 Marks)
(ii) Explain how the Chebyshev's polynomials can be used to approximate a function $f(x)$ by a lesser degree polynomial while minimizing approximation errors.
(10 Marks)
(b) Given that $A=\left[\begin{array}{lll}3 & 0 & 0 \\ 5 & 4 & 0 \\ 3 & 6 & 1\end{array}\right]$ determine the eigenvalues and eigenvectors. (7 Marks)

QUESTION THREE - (20 MARKS)

(a) Obtain a linear polynomial approximation to the function $f(x)=x^{3}$ on the interval $[0,1]$ using the least squares approximation with $w(x)=1$.
(11 Marks)
(b) Find the largest eigenvalue, in magnitude, and the associated eigenvector using the power method up to the $4^{\text {th }}$ iterate. Use initial vector as $(1,1,1)^{T}$ and 4 d.p. $A=\left[\begin{array}{lll}2 & 3 & 2 \\ 4 & 3 & 5 \\ 3 & 2 & 9\end{array}\right]$
(9 Marks)

QUESTION FOUR - (20 MARKS)

(a) Given that matrix $A=\left[\begin{array}{ccc}2 & -1 & -1 \\ -1 & 2 & 1 \\ -1 & 1 & 4\end{array}\right]$ has eigenvalues $\lambda_{1}=1, \lambda_{2}=2, \lambda_{3}=5$ and

$$
\text { eigenvector matrix } \bar{x}=\left[\bar{x}_{1}, \bar{x}_{2}, \bar{x}_{3}\right]=\left[\begin{array}{ccc}
1 & 1 & -1 \\
1 & -1 & 1 \\
0 & 0 & 2
\end{array}\right]
$$

(i) Deflate and reduce λ_{1} using \bar{x}_{1} and first row of A .
(ii) Determine the eigenvalues of the resulting matrix in (i) above.
(iii)Is deflation via the third row of A possible? Why?
(b) Use Householder's method to transform $A=\left[\begin{array}{ccc}2 & 3 & -1 \\ 3 & 1 & 2 \\ -1 & 2 & -1\end{array}\right]$ to a symmetric tridiagonal matrix.

QUESTION FIVE - (20 MARKS)

Given that $A=\left[\begin{array}{ccc}-2 & 2 & -3 \\ 3 & 1 & -6 \\ -1 & -2 & 0\end{array}\right]$. Obtain the matrix $P=\left[\begin{array}{ccc}1 & -2 & 3 \\ 2 & 1 & 0 \\ -1 & 0 & 1\end{array}\right]$ that diagonalizes A.
Also determine P^{-1} i.e inverse of P.

