

MERU UNIVERSITY OF SCIENCE AND TECHNOLOGY

P.O. Box 972-60200 – Meru-Kenya. Tel: 020-2069349, 061-2309217. 064-30320 Cell phone: +254 712524293, +254 789151411 Fax: 064-30321 Website: www.must.ac.ke Email: info@must.ac.ke

University Examinations 2013/2014

FIRSTYEAR, FIRST SEMESTER EXAMINATIONS FOR DEGREE OF MASTER OF SCIENCE IN APPLIED MATHEMATICS

SMA 3136: NUMERICAL ANALYSIS I

DATE: APRIL 2014

TIME: 3 HOURS

INSTRUCTIONS: Answer question **one** and any other **two** questions.

QUESTION ONE - (30 MARKS)

- (a) Given a collection of 2m data points $\{x_i, y_i\}_{i=0}^{2m-1}$
 - (i) Assuming that the data points are within the interval $\left[-\pi,\pi\right]$ where $x_0 = -\pi$ and

$$x_{2m} = \pi$$
, show that $x_i = -\pi + \left(\frac{i}{m}\right)\pi$ (4 Marks)

(ii) The determination of constants in the summation

$$s_n(x) = \frac{a_0}{2} + a_n \cos nx + \sum_{k=1}^{n-1} \left[a_k \cos kx + b_k \sin kx \right] \text{ is enabled by orthogonality}$$

property of the functions involved. Show that $b_k = \frac{1}{m} \sum_{i=0}^{2m-1} y_i \sin kx_i$ for k = 1, 2, ..., n-1 (6 Marks)

(b) In rational approximations of functions, state the two reasons that gives the Pade's method a computational advantage over the Chebyshev's method. Also state the improvements that can be made to the Chebyshev's method to make it better.

(4 Marks)

(c) State that $f(x) \in C[a, b]$ obtain the expression for the linear normal equations that have to be solved to get $P_n(x)$, the least squares approximating polynomial for f(x).

(7 Marks)

(d) State the Gerschgorin's theorem.

(e) Use the theorem in (d) above to determine bounds of the eigenvalues of the matrix

3	-2	0	1
-1	3	1	0
0	1	9	2
1	1	2	9

QUESTION TWO – (20 MARKS)

(a) Given that $T_n(x)$ is a Chebyshev polynomial of degree $n \ge 1$

(i) Prove that
$$\int_{-1}^{1} \frac{T_m(x)T_n(x)}{\sqrt{1-x^2}} dx = 0 \text{ when } m \neq n$$
(3 Marks)

(ii) Explain how the Chebyshev's polynomials can be used to approximate a function f(x) by a lesser degree polynomial while minimizing approximation errors.

(10 Marks)

(b) Given that
$$A = \begin{bmatrix} 3 & 0 & 0 \\ 5 & 4 & 0 \\ 3 & 6 & 1 \end{bmatrix}$$
 determine the eigenvalues and eigenvectors. (7 Marks)

QUESTION THREE – (20 MARKS)

- (a) Obtain a linear polynomial approximation to the function $f(x) = x^3$ on the interval [0,1] using the least squares approximation with w(x) = 1. (11 Marks)
- (b) Find the largest eigenvalue, in magnitude, and the associated eigenvector using the power

method up to the 4th iterate. Use initial vector as $(1,1,1)^T$ and 4 d.p. $A = \begin{bmatrix} 2 & 3 & 2 \\ 4 & 3 & 5 \\ 3 & 2 & 9 \end{bmatrix}$

(9 Marks)

QUESTION FOUR – (20 MARKS)

(a) Given that matrix
$$A = \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & 1 \\ -1 & 1 & 4 \end{bmatrix}$$
 has eigenvalues $\lambda_1 = 1, \lambda_2 = 2, \lambda_3 = 5$ and
eigenvector matrix $\overline{x} = [\overline{x}_1, \overline{x}_2, \overline{x}_3] = \begin{bmatrix} 1 & 1 & -1 \\ 1 & -1 & 1 \\ 0 & 0 & 2 \end{bmatrix}$
(i) Deflate and reduce λ_1 using \overline{x}_1 and first row of A. (6 Marks)

(ii) Determine the eigenvalues of the resulting matrix in (i) above.(2 Marks)(iii) Is deflation via the third row of A possible? Why?(2 Marks)

(b) Use Householder's method to transform $A = \begin{bmatrix} 2 & 3 & -1 \\ 3 & 1 & 2 \\ -1 & 2 & -1 \end{bmatrix}$ to a symmetric tridiagonal matrix. (10 Marks)

QUESTION FIVE - (20 MARKS)

Given that $A = \begin{bmatrix} -2 & 2 & -3 \\ 3 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$. Obtain the matrix $P = \begin{bmatrix} 1 & -2 & 3 \\ 2 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$ that diagonalizes A. Also determine P^{-1} i.e inverse of P. (20 Marks)