

## University Examinations 2012/2013

# FIRST YEAR, THIRD SEMESTER EXAMINATION FOR MASTER OF SCIENCE IN APPLIED MATHEMATICS

## SMA 3137: NUMERICAL ANALYSIS II

#### DATE: DECEMBER 2012

## **TIME: 3HOURS**

**INSTRUCTIONS:** Answer questions **one** and any other **two** questions

## **QUESTION ONE - (30 MARKS)**

|    | Approximate the singular integral $\int_0^\infty e^{-x^2 - \frac{1}{x^2}} dx$                           | (9 Marks)     |
|----|---------------------------------------------------------------------------------------------------------|---------------|
| b) | Find the value of the integral $\int_{2}^{3} \frac{\cos 2x}{1+\sin x} dx$ , Using the Gauss-Legendre 3- | point formula |
|    | giving your answer correct to 6 decimal places.                                                         | (7 Marks)     |
| c) | Given the differential equation $\frac{dy}{dt} = t - y^2$ , $y(0) = 1$ , compute $y(0.1)$ ,             | y(0.2)and     |
|    | y(0.3) using the modified Euler method with $h = 0.1$                                                   | (6 Marks)     |
| d) | Use the finite difference method to solve the boundary value problem                                    |               |
|    | $\frac{d^2y}{dx^2} = y,$                                                                                |               |
|    | y(0) = 0, y(2) = 3.627. Use h = 0.5                                                                     | (8 Marks)     |

## **QUESTION TWO – (20 MARKS)**

- a) Approximate the integral  $\int_0^1 e^{x^2} dx$ Using Newton – Cotes method corresponding to n = 3 (11 Marks)
- b) Use Romberg integration method to find an approximation to the integral

## $\int_0^3 f(x) dx$ from the following functional data:

| x    | 0.00   | 0.75    | 1.50    | 2.25    | 3.00    |
|------|--------|---------|---------|---------|---------|
| f(x) | 1.0000 | 0.47235 | 0.22313 | 0.10540 | 0.04979 |

(9 Marks)

## **QUESTION THREE – (20 MARKS)**

- a) Estimate  $\int_{0}^{0.5} \int_{0}^{0.5} \frac{\sin(xy)}{1+xy} dx dy$  Using Simpson's rule for double integrals with both steps sizes = 0.25 (10 Marks)
- b) Using Schmidt explicit formula solve the equation  $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ Subject to the conditions  $u(x, 0) = \sin \pi x$ ,  $0 \le x \le 1$ , u(0, t) = u(1, t) = 0Carry out computation for two levels taking  $h = \frac{1}{3}$ ,  $k = \frac{1}{36}$ . (10 Marks)

## **QUESTION FOUR - (20 MARKS)**

Use the ABAM and Runge-Kutta methods to approximate x(2) for the initial value problem

$$\frac{dx}{dt} = 5t - 2x, x(0) = 1 \text{ Using step size } h = 0.5 \text{ correct to 5 d.p.}$$
(20 Marks)