

MERU UNIVERSITY OF SCIENCE AND TECHNOLOGY

P.O. Box 972-60200 – Meru-Kenya.

Tel: 020-2069349, 061-2309217. 064-30320 Cell phone: +254 712524293, +254 789151411

Fax: 064-30321

Website: www.must.ac.ke Email: info@mucst.ac.ke

University Examinations 2013/2014

FIRST YEAR, THIRD TRIMESTER EXAMINATION FOR THE DEGREE OF MASTER OF SCIENCE IN APPLIED MATHEMATICS

SMA 3137: NUMERICAL ANALYSIS II

DATE: DECEMBER 2013

TIME: 3 HOURS

INSTRUCTIONS: Answer question one and any other two questions

QUESTION ONE – (30 MARKS)

a) Determine the coefficients in the formula

∫₀^{2L} x^{-1/2} f(x)dx = (2L)^{1/2} [A₀ f(0) + A₁ f(h) + A₂ f(2h)],

such that it is exact for polynomials of as high degree as possible. (7 Marks)
b) Find the value of the integral

I = ∫₂³ cos 2x / (1+sin x) dx using Gauss-Legendre two-point integration rule. (5 Marks)
c) Consider the initial value problem

y' = x(y + x) - 2, y(0) = 2. Use the Euler method with step sizes

h = 0.2 and h = 0.15 to compute approximations to y(0.6) correct to 5 decimal places. (8 Marks)

d) Evaluate the singular integral

$$\int_0^1 \frac{\cos x}{\sqrt{x}} dx . \tag{4 Marks}$$

e) Solve $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$, in the domain of the figure below by Gauss-Seidel method. Perform only two iterations. (6 Marks)

QUESTION TWO (20 MARKS)

- a) Evaluate the double integral $\int_0^1 \int_1^2 \frac{2xy}{(1+x^2)(1+y^2)} dy dx$ using the Simpson's rule with h = k = 0.25. Compare your answer with the exact solution. (12 Marks)
- b) Use the fourth order Runge-Kutta method to find u = (0.2), of the initial value problem $\frac{du}{dt} = -2tu^2, u(0) = 1 \text{ using } h = 0.2. \quad (8 \text{ Marks})$

QUESTION THREE (20 MARKS)

- a) Solve $\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2}$ with conditions $u(0,t) = u(1,t) = 0, u(x,0) = \frac{1}{2}x(1-x)$ and u(x,0) = 0, taking h = k = 0.1 for $0 \le t \le 0.2$ (12 Marks)
- b) Derive the Gauss-Laguerre two-point formula and use it to evaluate the integral $\int_0^\infty \frac{e^{-x}}{1+x^2} dx$ (8 Marks)

QUESTION FOUR (20 MARKS)

a) The Lobatto quadrature formula is given by

$$\int_{-1}^{1} B_1 f(-1) + B_2 f(1) + \sum_{k=1}^{n-1} H_k f(x_k)$$

Determine B_1 , B_2 , x_k and H_k for n = 3. Find an expression for the truncation error.

b) Solve the system of equations y' = u, y(0) = 1, u' = -4y - 2u, u(0) = 1 by the Runge – Kutta fourth order method using a step – length h = 0.1 at x = 0.2.

(9 Marks)

(11 Marks)