MERU UNIVERSITY OF SCIENCE AND TECHNOLOGY

P.O. Box 972-60200 - Meru-Kenya.

Tel: 020-2069349, 061-2309217. 064-30320 Cell phone: +254 712524293, +254 789151411

University Examinations 2013/2014

FIRST YEAR, THIRD TRIMESTER EXAMINATION FOR THE DEGREE OF MASTER OF SCIENCE IN APPLIED MATHEMATICS

SMA 3137: NUMERICAL ANALYSIS II
DATE: DECEMBER 2013
TIME: 3 HOURS
INSTRUCTIONS: Answer question one and any other two questions

QUESTION ONE - (30 MARKS)

a) Determine the coefficients in the formula
$\int_{0}^{2 L} x^{-\frac{1}{2}} f(x) d x=(2 L)^{\frac{1}{2}}\left[A_{0} f(0)+A_{1} f(h)+A_{2} f(2 h)\right]$,
such that it is exact for polynomials of as high degree as possible.
b) Find the value of the integral
$I=\int_{2}^{3} \frac{\cos 2 x}{1+\sin x} d x$ using Gauss-Legendre two-point integration rule. (5 Marks)
c) Consider the initial value problem
$y^{\prime}=x(y+x)-2, y(0)=2$. Use the Euler method with step sizes
$\mathrm{h}=0.2$ and $\mathrm{h}=0.15$ to compute approximations to $\mathrm{y}(0.6)$ correct to 5 decimal places.
(8 Marks)
d) Evaluate the singular integral
$\int_{0}^{1} \frac{\cos x}{\sqrt{x}} d x$.
(4 Marks)
e) Solve $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$, in the domain of the figure below by Gauss-Seidel method. Perform only two iterations.
(6 Marks)

QUESTION TWO (20 MARKS)

a) Evaluate the double integral $\int_{0}^{1} \int_{1}^{2} \frac{2 x y}{\left(1+x^{2}\right)\left(1+y^{2}\right)} d y d x$ using the Simpson's rule with $\mathrm{h}=\mathrm{k}=0.25$. Compare your answer with the exact solution.
b) Use the fourth order Runge-Kutta method to find $u=(0.2)$, of the initial value problem $\frac{d u}{d t}=-2 t u^{2}, u(0)=1$ using $\mathrm{h}=0.2$.

QUESTION THREE (20 MARKS)

a) Solve $\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}}$ with conditions

$$
\begin{align*}
& u(0, t)=u(1, t)=0, u(x, 0)=\frac{1}{2} x(1-x) \text { and } u(x, 0)=0, \text { taking } \\
& h=k=0.1 \text { for } 0 \leq t \leq 0.2 \tag{12Marks}
\end{align*}
$$

b) Derive the Gauss-Laguerre two-point formula and use it to evaluate the integral
$\int_{0}^{\infty} \frac{e^{-x}}{1+x^{2}} d x$
(8 Marks)

QUESTION FOUR (20 MARKS)

a) The Lobatto quadrature formula is given by
$\int_{-1}^{1} B_{1} f(-1)+B_{2} f(1)+\sum_{k=1}^{n-1} H_{k} f\left(x_{k}\right)$
Determine B_{1}, B_{2}, x_{k} and H_{k} for $\mathrm{n}=3$. Find an expression for the truncation error.
(11 Marks)
b) Solve the system of equations $y^{\prime}=u, y(0)=1, u^{\prime}=-4 y-2 u, u(0)=1$ by the Runge - Kutta fourth order method using a step - length $h=0.1$ at $x=0.2$.
(9 Marks)

