University Examinations 2012/2013

FIRST YEAR, FIRST/THIRD SEMESTER EXAMINATION FOR MASTER OF SCIENCE IN APPLIED MATHEMATICS

SMA 3139: PARTIAL DIFFERENTIAL EQUATIONS 1

DATE: DECEMBER 2012
TIME: 3HOURS
INSTRUCTIONS: Answer questions one and any other two questions

QUESTION ONE - (30 MARKS)

a) Find the characteristics of the hyperbolic equation
$x \frac{\partial^{2} u}{\partial x^{2}}-y \frac{\partial^{2} u}{\partial x \partial y}+\frac{\partial u}{\partial y}=0$
Reduce the equation to the standard form and solve it.
(8 Marks)
b) Use the Laplace transform to solve the equation
$\frac{\partial u}{\partial t}=3 \frac{\partial u}{d x}, u(x, 0)=4 e^{-2 x}$
c) Solve by separating the variables, the equation

$$
\begin{equation*}
\frac{\partial u}{\partial x}=4 \frac{\partial u}{\partial y}, \quad u(0, y)=8 e^{-3 y} \tag{6Marks}
\end{equation*}
$$

d) The steady state temperature in a semi-infinite plate is determined from
$\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0,0<x<\pi, y>0$
$u(0, y)=0, u(\pi, y)=e^{-y}, \quad y>0$
$\left.\frac{\partial u}{\partial y}\right|_{y=0}=0,0<x<\pi$

Solve for $u(x, y)$ using Fourier Cosine transform.
e) For what values of x and y is the following equation hyperbolic, parabolic or Elliptic

$$
\begin{equation*}
(y+1) \frac{\partial^{2} u}{\partial x^{2}}+2 x \frac{\partial^{2} u}{\partial x \partial y}+\frac{\partial^{2} u}{\partial y^{2}}=x+y \tag{5Marks}
\end{equation*}
$$

QUESTION TWO - (20 MARKS)

a) Using the complex form of the Fourier transform, solve the boundary value problem.
$a^{2} \frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial^{2} u}{\partial t^{2}},-\infty<x<\infty, t>0$
$u(x, 0)=f(x), U_{t}(x, 0)=g(x)$
b) Using the Laplace transform, solve the initial boundary value problem;

$$
\begin{align*}
& \frac{\partial^{2} y}{\partial t^{2}}=4 \frac{\partial^{2} y}{\partial x^{2}}, y(0, t)=y(5, t)=0 \\
& y(x, 0)=0, y_{t}(x, 0)=5 \sin \pi x \tag{10Marks}
\end{align*}
$$

QUESTION THREE - (20 MARKS)

a) Solve the boundary value problem
$\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}, 0<x<\infty, t>0$
$u(0, t)=0, t>0$
$u(x, 0)=f(x), 0<x<\infty$, using the appropriate Fourier transform.
(8 Marks)
b) A tightly stretched string with fixed ends $x=0$ and $x=l$ is initially in a position given by $y=y_{0} \operatorname{Sin}^{3} \frac{\pi x}{l}$.
If it is released from rest from this position, find the displacement $y(x, t)$ using the separation of variables method.
(12 Marks)

QUESTION FOUR - (20 MARKS)

a) Using the Eigen function expansion method, solve the initial boundary value problem.

$$
\begin{align*}
& \frac{\partial^{2} u}{d t^{2}}=c^{2} \frac{\partial^{2} y}{d x^{2}}+\frac{e^{-t}}{\rho}, 0<x<L, t>0 \\
& y(0, t)=0, t>0 \\
& y(L, t)=0, t>0 \\
& y(x, 0)=f(x), 0<x<L \\
& y_{t}(x, 0)=0, \quad 0<x<L \tag{20Marks}
\end{align*}
$$

