

University Examinations 2012/2013

FIRST YEAR, FIRST/THIRD SEMESTER EXAMINATION FOR MASTER OF SCIENCE IN APPLIED MATHEMATICS

SMA 3139: PARTIAL DIFFERENTIAL EQUATIONS 1

DATE: DECEMBER 2012

TIME: 3HOURS

INSTRUCTIONS: Answer questions **one** and any other **two** questions

QUESTION ONE - (30 MARKS)

a)	Find the characteristics of the hyperbolic equation	
	$x\frac{\partial^2 u}{\partial x^2} - y\frac{\partial^2 u}{\partial x \partial y} + \frac{\partial u}{\partial y} = 0$	
	Reduce the equation to the standard form and solve it.	(8 Marks)
b)	Use the Lonlage transform to solve the equation	

$$\frac{\partial u}{\partial t} = 3 \frac{\partial u}{\partial x}, \quad u(x,0) = 4e^{-2x}$$
(4 Marks)

- c) Solve by separating the variables, the equation $\frac{\partial u}{\partial x} = 4 \frac{\partial u}{\partial y}, \quad u(0, y) = 8e^{-3y} \quad (6 \text{ Marks})$
- d) The steady state temperature in a semi-infinite plate is determined from $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 , 0 < x < \pi, y > 0$ $u(0, y) = 0, u(\pi, y) = e^{-y}, y > 0$ $\frac{\partial u}{\partial y}\Big|_{y=0} = 0, 0 < x < \pi$

Solve for u(x, y) using Fourier Cosine transform. (7 Marks)

e) For what values of x and y is the following equation hyperbolic, parabolic or Elliptic $(y+1)\frac{\partial^2 u}{\partial x^2} + 2x\frac{\partial^2 u}{\partial x \partial y} + \frac{\partial^2 u}{\partial y^2} = x + y$ (5 Marks)

QUESTION TWO – (20 MARKS)

- a) Using the complex form of the Fourier transform, solve the boundary value problem. $a^{2} \frac{\partial^{2} u}{\partial x^{2}} = \frac{\partial^{2} u}{\partial t^{2}}, -\infty < x < \infty, t > 0$ $u(x, 0) = f(x), \ U_{t}(x, 0) = g(x)$ (10 Marks)
- b) Using the Laplace transform, solve the initial boundary value problem;

$$\frac{\partial^2 y}{\partial t^2} = 4 \frac{\partial^2 y}{\partial x^2}, \ y(0,t) = y(5,t) = 0$$

y(x,0) = 0, y_t(x,0) = 5 sin \pi x (10 Marks)

QUESTION THREE – (20 MARKS)

- a) Solve the boundary value problem $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}, \quad 0 < x < \infty, \quad t > 0$ $u(0,t) = 0, \quad t > 0$ $u(x,0) = f(x), \quad 0 < x < \infty, \text{ using the appropriate Fourier transform.}$ (8 Marks)
- b) A tightly stretched string with fixed ends x = 0 and x = l is initially in a position given by $y = y_0 Sin^3 \frac{\pi x}{l}$.

If it is released from rest from this position, find the displacement y(x, t) using the separation of variables method. (12 Marks)

QUESTION FOUR – (20 MARKS)

a) Using the Eigen function expansion method, solve the initial boundary value problem. 2^{2}

 $\begin{aligned} \frac{\partial^2 u}{dt^2} &= c^2 \frac{\partial^2 y}{dx^2} + \frac{e^{-t}}{\rho}, 0 < x < L, \ t > 0\\ y(0,t) &= 0, \ t > 0\\ y(L,t) &= 0, \ t > 0\\ y(x,0) &= f(x), \ 0 < x < L\\ y_t(x,0) &= 0, \ 0 < x < L \end{aligned}$

(20 Marks)