MERU UNIVERSITY OF SCIENCE AND TECHNOLOGY
P.O. Box 972-60200 - Meru-Kenya.

Tel: 020-2069349, 061-2309217. 064-30320 Cell phone: +254 712524293, +254 789151411
Fax: 064-30321
Website: www.must.ac.ke Email: info@mucst.ac.ke

University Examinations 2012/2013

FIRST YEAR, FIRST SEMESTER EXAMINATION FOR THE DEGREE OF MASTER OF SCIENCE IN APPLIED MATHEMATICS

SMA 3139: PARTIAL DIFFERENTIAL EQUATIONS I

DATE: AUGUST 2013
TIME: 3 HOURS
INSTRUCTIONS: Answer question one and any other two questions

QUESTION ONE - (30 MARKS)

(a) (i) Find the Fourier Sine and Cosine transforms of

$$
\begin{equation*}
f(x)=e^{-a x} \tag{8Marks}
\end{equation*}
$$

(ii) Using the appropriate Fourier transform, solve the equation
$\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}$ for $x \geq 0, t \geq 0$
Under given conditions $u=u_{0}$ at $x=0, t>0$ with initial condition $u(x, 0)=0, x \geq 0$
(b) Using the method of separation of variables, solve $\frac{\partial u}{\partial x}=2 \frac{\partial u}{\partial t}+u$ where $u(x, 0)=6 e^{-3 x}$.
(6 Marks)
(c) A semi-infinite solid $x>0$ is initially at temperature zero. At time $t=0$, a constant temperature u_{0} is applied at the face $x=0$. Find the temperature at any point of the solid and at any time $t>0$, given that the temperature $u(x, t)$ is governed by the equation.

$$
\begin{equation*}
\frac{\partial u}{\partial t}=c^{2} \frac{\partial^{2} u}{\partial x^{2}} \tag{6Marks}
\end{equation*}
$$

QUESTION TWO - (20 MARKS)

(a) Find the Fourier series representing $f(x)=x, 0<x<2 \pi$ and sketch its graph from $x=-4 \pi$ to $x=4 \pi$.
(8 Marks)
(b) Solve by the method of separation of variables, the following boundary value problem,

$$
\begin{align*}
& \frac{\partial^{2} u}{\partial x^{2}}=\frac{1}{4} \frac{\partial^{2} u}{\partial t^{2}} \\
& u(0, t)=0, u(5, t)=0, u(x, 0)=0, \frac{\partial u}{\partial t} u(x, 0)=5 \sin \pi x \tag{12Marks}
\end{align*}
$$

QUESTION THREE - (20 MARKS)

(a) An infinitely long string having one end at $x=0$ is initially at rest along x -axis. The end $x=0$ is given a transverse displacement $f(t)$, when $t>0$. Using the Laplace transform method find the displacement of the string at any time given the governing equation is $\frac{\partial^{2} y}{\partial x^{2}}=c^{2} \frac{\partial^{2} y}{\partial t^{2}}$
(b) Use the complex form of the Fourier transform to solve the boundary value problem

$$
\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}, u(x, 0)=f(x),-\infty<x<\infty
$$

governing the heat conduction in a very long metal bar.

QUESTION FOUR - (20 MARKS)

Use the Eigen function expansion method to solve the one-dimensional variation problem for displacement of a taut string with time-dependent forcing function,
$\frac{\partial^{2} y}{\partial t^{2}}=c^{2} \frac{\partial^{2} y}{\partial x^{2}}+\frac{e^{-t}}{\rho}, 0<x<l, t>0$
$y(0, t)=y(l, t)=0, \quad y(x, 0)=f(x), y_{t}(x, 0)=0$
(20 Marks)

