MERU UNIVERSITY OF SCIENCE AND TECHNOLOGY
P.O. Box 972-60200 - Meru-Kenya.

Tel: 020-2069349, 061-2309217. 064-30320 Cell phone: +254 712524293, +254 789151411
Fax: 064-30321
Website: www.must.ac.ke Email: info@mucst.ac.ke

University Examinations 2013/2014

FIRST YEAR, FIRST TRIMESTER EXAMINATION FOR THE DEGREE OF MASTER OF SCIENCE IN APPLIED MATHEMATICS

SMA 3139: PARTIAL DIFFERENTIAL EQUATIONS I

DATE: DECEMBER 2013
TIME: 3 HOURS
INSTRUCTIONS: Answer question one and any other two questions

QUESTION ONE - (30 MARKS)

a) Find the characteristics of the following equation and hence reduce it to the appropriate standard form. Obtain the general solution if possible

$$
\begin{equation*}
e^{2 x} \frac{\partial^{2} u}{\partial x^{2}}+2 e^{x+y} \frac{\partial^{2} u}{\partial x \partial y}+e^{2 y} \frac{\partial^{2} u}{\partial y^{2}}=0 \tag{11Marks}
\end{equation*}
$$

b) Solve using the Laplace transform the equation

$$
\begin{align*}
& \frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}, u_{x}(0, t)=0, u(2, t)=0 \\
& u(x, 0)=8 \cos \frac{3 \pi}{4} x-6 \cos \frac{9 \pi}{4} x \tag{8Marks}
\end{align*}
$$

c) Using the appropriate Fourier transform, solve the boundary value problem.
$\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}, u(0, t)=0, u(x, 0)=f(x)$
$0<x<\infty, t>0$
d) Find the coefficient a_{n} so that $1+2 x=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi}{3} x$ for all x in the interval $0<x<3$.

QUESTION TWO (20 MARKS)

a) Use the method of separation of variables to solve the boundary value problem.

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}+\frac{e^{-t}}{\rho}, 0<x<50, t>0
$$

$$
\begin{equation*}
u(0, t)=u(50, t)=0, \quad u_{t}(x, 0)=0 \tag{8Marks}
\end{equation*}
$$

b) Solve the one-dimensional vibration problem for the displacement of a taut string with time - dependent forcing function $F(x, t)=e^{-t}$, given by
$\frac{\partial^{2} y}{\partial t^{2}}=c^{2} \frac{\partial^{2} y}{\partial x^{2}}+\frac{e^{-t}}{\rho}$
$y(0, t)=y(l, t)=0, y(x, 0)=f(x), y_{t}(x, 0)=0$
$t>0,0<x<l$
Use part (a) for the initial solution.
(12 Marks)

QUESTION THREE (20 MARKS)

a) Use the complex form of the Fourier transform to solve the boundary value problem:

$$
\begin{align*}
& a^{2} \frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial^{2} u}{\partial t^{2}},-\infty<x<\infty, t>0 \\
& u(x, 0)=f(x),\left.\frac{\partial u}{\partial t}\right|_{t=0}=g(x) \tag{12Marks}
\end{align*}
$$

b) If $g(x)=0$, show that the solution of part (a) can be written as $u(x, t)=\frac{1}{2}\{f(x+a t)+f(x-a t)\}$.

QUESTION FOUR (20 MARKS)

a) Solve using Laplace transform, the equation
$\frac{\partial^{2} z}{\partial t^{2}}=4 \frac{\partial^{2} z}{\partial x^{2}}, t>0, x>0$ where $z(0, x)=0,\left.\frac{\partial z}{\partial x}\right|_{t=0}=2, z(t, 0)=\sin t . \quad$ (7 Marks)
b) A sheet of metal coincides with the square in the xy-plane whose vertices are the points $(0,0),(1,0),(1,1)$ and $(0,1)$. The two faces of the sheet are perfectly insulated and the sheet is so thin that the heat flow can be regarded as two dimensional. The edges parallel to the x -axis are perfectly insulated, and the left - hand edge is maintained at a constant temperature of $0^{\circ} C$. If the temperature distribution $u(1, y)=f(y)$ is maintained along the right hand edge, find the steady-state temperature distribution throughout the sheet.
(13 Marks)

