

MERU UNIVERSITY OF SCIENCE AND TECHNOLOGY

P.O. Box 972-60200 – Meru-Kenya. Tel: 020-2069349, 061-2309217. 064-30320 Cell phone: +254 712524293, +254 789151411 Fax: 064-30321 Website: www.must.ac.ke Email: info@must.ac.ke

University Examinations 2013/2014

FIRSTYEAR, FIRST SEMESTER EXAMINATIONS FOR DEGREE OF MASTER OF SCIENCE IN APPLIED MATHEMATICS

SMA 3138: RIEMANNIAN GEOMETRY

DATE: APRIL 2014

TIME: 3 HOURS

INSTRUCTIONS: Answer question **one** and any other **two** questions.

QUESTION ONE - (30 MARKS)

(a)	Define	efine the following terms:					
	(i)	A Hausdorff space	(2 Marks)				
	(ii)	A differentiable manifold	(2 Marks)				
	(iii)	Symmetric tensor	(2 Marks)				
	(iv)	Skew symmetric tensor	(2 Marks)				

(b) Prove that if A_r^{pq} and B_t^s are tensors, then $C_{rt}^{pqs} = A_r^{qp} B_t^s$ is also a tensor. (4 Marks)

(c) Write the law of transformation for the tensor:

- (i) A_{jk}^i (2 Marks)
- (ii) B_{iik}^{mn} (2 Marks)

(d) Prove that a spherical coordinate system is orthogonal. (4 Marks)

(e) Represent the vector $\vec{A} = 2i - 2xj + yk$ in cylindrical coordinates. Then determine $A_{\rho}, A_{\theta}, and A_{z}$ (5 Marks)

(f) Given that
$$\overline{A}^{p} = \frac{\partial \overline{x}^{p}}{\partial x^{q}} A^{q}$$
, prove that $A^{q} = \frac{\partial x^{q}}{\partial \overline{x}^{q}} \overline{A}^{p}$ (2 Marks)

(g) Prove that the contraction of the tensor A_q^p in a scalar. (3 Marks)

QUESTION TWO - (20 MARKS)

Find the square of the elements of arc-length in:

(a) Cylindrical coordinates.	(5 Marks)
(b) Spherical coordinates	(9 Marks)
(c) Parabolic cylindrical coordinates.	(6 Marks)

QUESTION THREE – (20 MARKS)

(a)	If A_r^{pq}	and	B_r^{pq}	are tensors, prove that their sum and difference are tens	sors.
					(5 Marks)
(b)	Show	that	the c	contraction of the outer product of the tensors A^p and B_q	is an invariant
					(5 Marks)
(c)	Show	that	$\frac{\partial A_P}{\partial A_P}$	- is not a tensor even though A_p is a covariant tensor of	rank one.

c) Show that $\frac{1}{\partial x_q}$ is not a tensor even though A_p is a covariant tensor of rank one.

(5 Marks)

(d) Express the velocity \vec{V} and acceleration \vec{a} of a particle in cylindrical coordinates. (5 Marks)

QUESTION FOUR - (20 MARKS)

- (a) Prove that $A_{p,q} A_{q,p} = \frac{\partial A_p}{\partial x^q} \frac{\partial A_q}{\partial x^p}$ (6 Marks)
- (b) Calculate the intrinsic derivatives of
 - (i) an invariant \emptyset (3 Marks)
 - (ii) A^j (5 Marks)
 - (iii) A_k^j (6 Marks)