MERU UNIVERSITY OF SCIENCE AND TECHNOLOGY
P.O. Box 972-60200 - Meru-Kenya.

Tel: 020-2069349, 061-2309217.064-30320 Cell phone: +254 712524293, +254 789151411
Fax: 064-30321
Website: www.must.ac.ke Email: info@must.ac.ke
University Examinations 2013/2014

FIRSTYEAR, FIRST SEMESTER EXAMINATIONS FOR DEGREE OF MASTER OF SCIENCE IN APPLIED MATHEMATICS

SMA 3138: RIEMANNIAN GEOMETRY

INSTRUCTIONS: Answer question one and any other two questions.
QUESTION ONE - (30 MARKS)
(a) Define the following terms:
(i) A Hausdorff space
(2 Marks)
(ii) A differentiable manifold
(2 Marks)
(iii) Symmetric tensor
(2 Marks)
(iv) Skew symmetric tensor
(2 Marks)
(b) Prove that if $A_{r}^{p q}$ and B_{t}^{s} are tensors, then $C_{r t}^{p q s}=A_{r}^{q p} B_{t}^{s}$ is also a tensor. (4 Marks)
(c) Write the law of transformation for the tensor:

$$
\text { (i) } \quad A_{j k}^{i}
$$

(2 Marks)
(ii) $B_{i j k}^{m n}$
(2 Marks)
(d) Prove that a spherical coordinate system is orthogonal.
(4 Marks)
(e) Represent the vector $\vec{A}=2 i-2 x j+y k$ in cylindrical coordinates. Then determine A_{ρ}, A_{θ}, and A_{z}
(5 Marks)
(f) Given that $\bar{A}^{p}=\frac{\partial \bar{x}^{p}}{\partial x^{q}} A^{q}$, prove that $A^{q}=\frac{\partial x^{q}}{d \bar{x}^{q}} \bar{A}^{p}$
(g) Prove that the contraction of the tensor A_{q}^{p} in a scalar.

QUESTION TWO - (20 MARKS)

Find the square of the elements of arc-length in:
(a) Cylindrical coordinates.
(b) Spherical coordinates
(c) Parabolic cylindrical coordinates.

QUESTION THREE - (20 MARKS)

(a) If $A_{r}^{p q}$ and $B_{r}^{p q}$ are tensors, prove that their sum and difference are tensors. (5 Marks)
(b) Show that the contraction of the outer product of the tensors A^{p} and B_{q} is an invariant. (5 Marks)
(c) Show that $\frac{\partial A_{p}}{\partial x_{q}}$ is not a tensor even though A_{p} is a covariant tensor of rank one.
(d) Express the velocity \vec{V} and acceleration \vec{a} of a particle in cylindrical coordinates.
(5 Marks)

QUESTION FOUR - (20 MARKS)

(a) Prove that $A_{p, q}-A_{q, p}=\frac{\partial A_{p}}{\partial x^{q}}-\frac{\partial A_{q}}{\partial x^{p}}$
(b) Calculate the intrinsic derivatives of
(i) an invariant \emptyset
(ii) A^{j}
(iii) A_{k}^{j}

